Description
设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求\[\sum_{i=1}^{N}\sum_{j=1}^{M}d(ij)\]。
Input
输入文件包含多组测试数据。
第一行,一个整数\(T\),表示测试数据的组数。
接下来的\(T\)行,每行两个整数\(N,M\)。
Output
\(T\)行,每行一个整数,表示你所求的答案。
Sample Input
2
7 4
5 6
Sample Output
110
121
HINT
\(1 \le N, M \le 50000\)
\(1 \le T \le 50000\)
这题有个很屌的结论:\[\sum_{i=1}^{N}\sum_{j=1}^{M}d(ij)=\sum_{i=1}^{N}\sum_{j=1}^{M}\lfloor\frac{N}{i}\rfloor\lfloor\frac{M}{j}\rfloor\lbrack gcd(i,j)=1 \rbrack\]
根据PoPoQQQ博客所说的,我们可以先证明这个式子的成立:\[d(nm)=\sum_{i \mid n}\sum_{j \mid m}\lbrack gcd(i,j)=1 \rbrack\]
我们可以证明一下:我们对每个质数\(p\)单独算贡献,设\(n=n’ \times p^{k_{1}}\),\(m=m’ \times p^{k_{2}}\)。那么,该质数\(p\)对答案的贡献显然为\(k_{1}+k_{2}+1\)。于是我们考虑\[d(nm)=\sum_{i \mid n}\sum_{j \mid m}\lbrack gcd(i,j)=1 \rbrack\]这个式子,发现\(p\)对之有贡献的数对\((i,j)\)仍然是\[(p^{k_{1}},1),(p^{k_{1}-1},1) \cdots (1,1) \cdots (1,p^{k_{2}-1}),(1,p^{k_{2}})\]这\(k_{1}+k_{2}+1\)个,因此得证。
代入得\[ \sum_{n = 1}^{N}\sum_{m = 1}^{M}d(nm) = \sum_{n = 1}^{N}\sum_{m = 1}^{M}\sum_{i \mid n} \sum_{j \mid m}[gcd(i,j)=1]\]
我们转变枚举量,先枚举\(i,j\)就有
\[\sum_{i=1}^{N}\sum_{j=1}^{M}\lfloor\frac{N}{i}\rfloor\lfloor\frac{M}{j}\rfloor\lbrack gcd(i,j)=1 \rbrack\]
于是\[\sum_{i=1}^{N}\sum_{j=1}^{M}\lfloor\frac{N}{i}\rfloor\lfloor\frac{M}{j}\rfloor\lbrack gcd(i,j)=1 \rbrack\]这个式子我们可以上反演了。
反演化为\[\sum_{i=1}^{N}\sum_{j=1}^{M}\lfloor\frac{N}{i}\rfloor\lfloor\frac{M}{j}\rfloor \sum_{g \mid i\;g \mid j} \mu(g)\]
转而枚举\(g\),于是就可得到\[\sum_{g=1}^{N}\mu(g)\sum_{i=1}^{\lfloor \frac{N}{g} \rfloor}\sum_{j=1}^{\lfloor \frac{M}{g} \rfloor}\lfloor \frac{N}{ig} \rfloor\lfloor \frac{M}{jg} \rfloor\]
再化一下就可得到\[\sum_{g=1}^{N}\mu(g)\sum_{i=1}^{\lfloor \frac{N}{g} \rfloor}\lfloor \frac{N}{ig} \rfloor\sum_{j=1}^{\lfloor \frac{M}{g} \rfloor}\lfloor \frac{M}{jg} \rfloor\]
又有\[\lfloor \frac{N}{ab} \rfloor=\lfloor \frac{\lfloor \frac{N}{a} \rfloor}{b} \rfloor\]
于是我们发现\(\sum_{i=1}^{\lfloor \frac{N}{g} \rfloor}\lfloor \frac{N}{ig} \rfloor\)只与\(\lfloor \frac{N}{g} \rfloor\)有关,我们可以\(O(n \sqrt{n})\)预处理\[f_{x}=\sum_{i=1}^{x}\lfloor \frac{x}{i} \rfloor\]
有了这个后再化简\[\sum_{g=1}^{N}\mu(g)f_{\lfloor \frac{N}{g} \rfloor}f_{\lfloor \frac{M}{g} \rfloor}\]就可在\(O(\sqrt{n})\)分段求了。皆大欢喜。
#include
#include
#include
using namespace std;
typedef long long ll;
#define maxn (50010)
int f[maxn],mu[maxn],prime[maxn],n,m,tot; bool exist[maxn];
inline int calc(int x)
{
int ret = 0;
for (int i = 1,last;i <= x;i = last+1)
{
last = min(x,x/(x/i));
ret += (x/i)*(last-i+1);
}
return ret;
}
inline void ready()
{
mu[1] = 1;
for (int i = 2;i <= 50000;++i)
{
if (!exist[i]) { prime[++tot] = i; mu[i] = -1; }
for (int j = 1;j <= tot&&prime[j]*i <= 50000;++j)
{
exist[i*prime[j]] = true;
if (i % prime[j] == 0) { mu[i*prime[j]] = 0; break; }
mu[i*prime[j]] = -mu[i];
}
}
for (int i = 1;i <= 50000;++i) mu[i] += mu[i-1],f[i] = calc(i);
}
inline ll work()
{
if (n > m) swap(n,m);
ll ret = 0;
for (int i = 1,last;i <= n;i = last+1)
{
last = min(n,min(n/(n/i),m/(m/i)));
ret += (ll)(mu[last]-mu[i-1])*((ll)f[n/i]*f[m/i]);
}
return ret;
}
int main()
{
freopen("3994.in","r",stdin);
freopen("3994.out","w",stdout);
ready();
int T; scanf("%d",&T);
while (T--) scanf("%d %d",&n,&m),printf("%lld\n",work());
fclose(stdin); fclose(stdout);
return 0;
}