当多个线程同时共享,同一个全局变量或静态变量,做写的操作时,可能会发生数据冲突问题,也就是线程安全问题。但是做读操作是不会发生数据冲突问题。
答:使用多线程之间同步synchronized或使用锁(lock)。
答:将可能会发生数据冲突问题(线程不安全问题),只能让当前一个线程进行执行。代码执行完成后释放锁,让后才能让其他线程进行执行。这样的话就可以解决线程不安全问题。
答:当多个线程共享同一个资源,不会受到其他线程的干扰。
答:就是将可能会发生线程安全问题的代码,给包括起来。
synchronized(同一个数据){
可能会发生线程冲突问题
}
就是同步代码块
synchronized(对象)//这个对象可以为任意对象
{
需要被同步的代码
}
对象如同锁,持有锁的线程可以在同步中执行
没持有锁的线程即使获取CPU的执行权,也进不去
答:在方法上修饰synchronized 称为同步函数
答:同步函数使用this锁。
证明方式: 一个线程使用同步代码块(this明锁),另一个线程使用同步函数。如果两个线程抢票不能实现同步,那么会出现数据错误。
方法上加上static关键字,使用synchronized 关键字修饰 或者使用类.class文件。
静态的同步函数使用的锁是 该函数所属字节码文件对象
可以用 getClass方法获取,也可以用当前 类名.class 表示。
synchronized 修饰方法使用锁是当前this锁。
synchronized 修饰静态方法使用锁是当前类的字节码文件
答:同步中嵌套同步,导致锁无法释放
原子性、可见性、有序性
即一个操作或者多个操作 要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行。
一个很经典的例子就是银行账户转账问题:
比如从账户A向账户B转1000元,那么必然包括2个操作:从账户A减去1000元,往账户B加上1000元。这2个操作必须要具备原子性才能保证不出现一些意外的问题。
我们操作数据也是如此,比如i = i+1;其中就包括,读取i的值,计算i,写入i。这行代码在Java中是不具备原子性的,则多线程运行肯定会出问题,所以也需要我们使用同步和lock这些东西来确保这个特性了。
原子性其实就是保证数据一致、线程安全一部分,
当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。
若两个线程在不同的cpu,那么线程1改变了i的值还没刷新到主存,线程2又使用了i,那么这个i值肯定还是之前的,线程1对变量的修改线程没看到这就是可见性问题。
程序执行的顺序按照代码的先后顺序执行。
一般来说处理器为了提高程序运行效率,可能会对输入代码进行优化,它不保证程序中各个语句的执行先后顺序同代码中的顺序一致,但是它会保证程序最终执行结果和代码顺序执行的结果是一致的。如下:
int a = 10; //语句1
int r = 2; //语句2
a = a + 3; //语句3
r = a*a; //语句4
则因为重排序,他还可能执行顺序为 2-1-3-4,1-3-2-4
但绝不可能 2-1-4-3,因为这打破了依赖关系。
显然重排序对单线程运行是不会有任何问题,而多线程就不一定了,所以我们在多线程编程时就得考虑这个问题了。
共享内存模型指的就是Java内存模型(简称JMM),JMM决定一个线程对共享变量的写入时,能对另一个线程可见。从抽象的角度来看,JMM定义了线程和主内存之间的抽象关系:线程之间的共享变量存储在主内存(main memory)中,每个线程都有一个私有的本地内存(local memory),本地内存中存储了该线程以读/写共享变量的副本。本地内存是JMM的一个抽象概念,并不真实存在。它涵盖了缓存,写缓冲区,寄存器以及其他的硬件和编译器优化。
从上图来看,线程A与线程B之间如要通信的话,必须要经历下面2个步骤:
1. 首先,线程A把本地内存A中更新过的共享变量刷新到主内存中去。
2. 然后,线程B到主内存中去读取线程A之前已更新过的共享变量。
下面通过示意图来说明这两个步骤:
如上图所示,本地内存A和B有主内存中共享变量x的副本。假设初始时,这三个内存中的x值都为0。线程A在执行时,把更新后的x值(假设值为1)临时存放在自己的本地内存A中。当线程A和线程B需要通信时,线程A首先会把自己本地内存中修改后的x值刷新到主内存中,此时主内存中的x值变为了1。随后,线程B到主内存中去读取线程A更新后的x值,此时线程B的本地内存的x值也变为了1。
从整体来看,这两个步骤实质上是线程A在向线程B发送消息,而且这个通信过程必须要经过主内存。JMM通过控制主内存与每个线程的本地内存之间的交互,来为java程序员提供内存可见性保证。
总结:什么是Java内存模型:java内存模型简称jmm,定义了一个线程对另一个线程可见。共享变量存放在主内存中,每个线程都有自己的本地内存,当多个线程同时访问一个数据的时候,可能本地内存没有及时刷新到主内存,所以就会发生线程安全问题。
Volatile 关键字的作用是变量在多个线程之间可见。
原因:线程之间是不可见的,读取的是副本,没有及时读取到主内存结果。
解决办法使用Volatile关键字将解决线程之间可见性, 强制线程每次读取该值的时候都去“主内存”中取值
注意: Volatile非原子性
AtomicInteger是一个提供原子操作的Integer类,通过线程安全的方式操作加减。
public class VolatileNoAtomic extends Thread {
static int count = 0;
private static AtomicInteger atomicInteger = new AtomicInteger(0);
@Override
public void run() {
for (int i = 0; i < 1000; i++) {
//等同于i++
atomicInteger.incrementAndGet();
}
System.out.println(count);
}
public static void main(String[] args) {
// 初始化10个线程
VolatileNoAtomic[] volatileNoAtomic = new VolatileNoAtomic[10];
for (int i = 0; i < 10; i++) {
// 创建
volatileNoAtomic[i] = new VolatileNoAtomic();
}
for (int i = 0; i < volatileNoAtomic.length; i++) {
volatileNoAtomic[i].start();
}
}
}
仅靠volatile不能保证线程的安全性。(原子性)
1. volatile轻量级,只能修饰变量。synchronized重量级,还可修饰方法
2. volatile只能保证数据的可见性,不能用来同步,因为多个线程并发访问volatile修饰的变量不会阻塞。
3. synchronized不仅保证可见性,而且还保证原子性,因为,只有获得了锁的线程才能进入临界区,从而保证临界区中的所有语句都全部执行。多个线程争抢synchronized锁对象时,会出现阻塞。
从上面自增的例子中可以看出:仅仅使用volatile并不能保证线程安全性。而synchronized则可实现线程的安全性。
ThreadLocal提高一个线程的局部变量,访问某个线程拥有自己局部变量。
当使用ThreadLocal维护变量时,ThreadLocal为每个使用该变量的线程提供独立的变量副本,所以每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。
ThreadLocal类接口很简单,只有4个方法,我们先来了解一下:
- void set(Object value)设置当前线程的线程局部变量的值。
- public Object get()该方法返回当前线程所对应的线程局部变量。
- public void remove()将当前线程局部变量的值删除,目的是为了减少内存的占用,该方法是JDK 5.0新增的方法。需要指出的是,当线程结束后,对应该线程的局部变量将自动被垃圾回收,所以显式调用该方法清除线程的局部变量并不是必须的操作,但它可以加快内存回收的速度。
- protected Object initialValue()返回该线程局部变量的初始值,该方法是一个protected的方法,显然是为了让子类覆盖而设计的。这个方法是一个延迟调用方法,在线程第1次调用get()或set(Object)时才执行,并且仅执行1次。ThreadLocal中的缺省实现直接返回一个null。
ThreadLoca通过map集合
Map.put(“当前线程”,值);