- 未来软件市场是怎么样的?做开发的生存空间如何?
cesske
软件需求
目录前言一、未来软件市场的发展趋势二、软件开发人员的生存空间前言未来软件市场是怎么样的?做开发的生存空间如何?一、未来软件市场的发展趋势技术趋势:人工智能与机器学习:随着技术的不断成熟,人工智能将在更多领域得到应用,如智能客服、自动驾驶、智能制造等,这将极大地推动软件市场的增长。云计算与大数据:云计算服务将继续普及,大数据技术的应用也将更加广泛。企业将更加依赖云计算和大数据来优化运营、提升效率,并
- 埃隆·马斯克表示特斯拉“没有必要”授权 xAI 模型
喜好儿网
人工智能AIGC马斯克
埃隆·马斯克近日在社交媒体上对《华尔街日报》的一篇报道进行了反驳。该报道指出,马斯克旗下的电动汽车公司特斯拉可能与人工智能初创公司xAI达成了一项收入分享协议,以便特斯拉能够使用xAI的人工智能模型。据称,这些模型将被集成到特斯拉的全自动驾驶(FSD)软件中,并可能用于开发特斯拉汽车的语音助手以及人形机器人擎天柱的软件。喜好儿网然而,马斯克否认了这一说法,他在社交媒体平台上表示,尽管特斯拉确实与x
- 边缘计算在现代数据中心的应用
666IDCaaa
边缘计算人工智能
当今数字化时代,数据中心扮演着至关重要的角色,而边缘计算的出现为现代数据中心带来了新的机遇和挑战。一、边缘计算的概念与特点边缘计算是一种将计算和数据存储靠近数据源或用户的分布式计算模式。与传统的集中式云计算相比,边缘计算具有以下特点:低延迟:由于数据处理在靠近数据源的地方进行,减少了数据传输的距离和时间,从而实现了更低的延迟。这对于实时性要求高的应用,如工业自动化、自动驾驶、虚拟现实等至关重要。高
- 一切皆是映射:AI的去中心化:区块链技术的融合
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
一切皆是映射:AI的去中心化:区块链技术的融合作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:AI,区块链,去中心化,智能合约,共识机制,数据安全,隐私保护,分布式账本技术,机器学习,数据隐私1.背景介绍1.1问题的由来随着人工智能(AI)技术的快速发展,其在各个领域的应用越来越广泛,从自动驾驶、智能医疗到金融服务,AI正在改变着我们的生活。
- 【ShuQiHere】探索人工智能核心:机器学习的奥秘
ShuQiHere
人工智能机器学习
【ShuQiHere】什么是机器学习?机器学习(MachineLearning,ML)是人工智能(ArtificialIntelligence,AI)中最关键的组成部分之一。它使得计算机不仅能够处理数据,还能从数据中学习,从而做出预测和决策。无论是语音识别、自动驾驶还是推荐系统,背后都依赖于机器学习模型。机器学习与传统的编程不同,它不再依赖于人类编写的固定规则,而是通过数据自我改进模型,从而更灵活
- 端到端的自动驾驶论文与代码整理
大别山伧父
自动驾驶
LearningbyCheatinggithubcodearxivpaperconferenceonrobotlearning最新进展(May2021)Checkoutourlatestfollow-upwork:WorldonRails(2020)Checkoutoursubmissiontothe2020CARLAChallenge!pass
- 机器学习与深度学习的区别
eqa11
机器学习
文章目录机器学习与深度学习的区别一、引言二、机器学习概述1、机器学习定义1.1、机器学习的应用2、机器学习算法三、深度学习概述1、深度学习定义1.1、深度学习的应用2、深度学习算法四、机器学习与深度学习的区别1、学习方法2、数据需求3、应用领域五、总结机器学习与深度学习的区别一、引言在人工智能的浪潮中,机器学习和深度学习无疑是最耀眼的两颗明星。它们在许多领域都取得了令人瞩目的成就,从自动驾驶汽车到
- GaN HEMT:未来功率半导体
David WangYang
硬件工程
硅基金属氧化物自1960年代以来,硅基金属氧化物半导体场效应晶体管(MOSFET)一直是电力电子应用的标准。尽管如此,各种技术的发展(尤其是在汽车和消费电子领域)给寻求以越来越小的外形尺寸提供更高效率和更大功率密度的开发人员带来了新的挑战。从大型数据中心和墙壁插座交流适配器到汽车车载充电站,各种用途的电源都需要高电压,同时尽可能少地占用宝贵的电路板空间。自动驾驶汽车还需要更高效的能量分配,以运行越
- Python编码系列—Python团队开发工作流:高效协作的艺术
学步_技术
Python编码python团队开发开发语言
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- 大模型实战—Ollama 本地部署大模型
猫猫姐
大模型大模型
Ollama本地部署大模型在当今的科技时代,AI已经成为许多领域的关键技术。AI的应用范围广泛,从自动驾驶汽车到语音助手,再到智能家居系统,都有着AI的身影,而随着Facebook开源LLama2更让越来越多的人接触到了开源大模型。今天我们推荐的是一条命令快速在本地运行大模型,在GitHub超过22KStar的开源项目:ollama随着围绕着Ollama的生态走向前台,更多用户也可以方便地在自己电
- 信息安全国内外现状及技术要求示例(R155/R156)
mini积木
信息安全安全mcu
国际政策、法规的现状与趋势鉴于对交通安全、社会安全甚至国家安全的重要影响,汽车网络安全、数据安全得到各相关国家和地区的高度重视,纷纷出台相关法规、标准。信息安全法规R155法规适用范围覆盖了乘用车及商用车,适用于M类、N类车型,装备了至少一个ECU的O类车型,以及具备L3及以上自动驾驶功能的L6和L7类车型。此法规适合于1958协议国(包括欧洲、日本、俄罗斯、澳大利亚等)。根据欧盟要求,从2022
- 探秘3D UNet-PyTorch:高效三维图像分割利器
鲍凯印Fox
探秘3DUNet-PyTorch:高效三维图像分割利器在医学影像处理、计算机视觉和自动驾驶等领域,三维图像的理解与分析至关重要。而是一个基于PyTorch实现的深度学习模型,专为三维图像分割任务设计。本文将深入剖析该项目的技术细节,应用场景及特性,以期吸引更多的开发者和研究人员参与其中。项目简介3DUNet是2DUNet的三维扩展,其结构保持了卷积神经网络的对称性,采用跳跃连接的方式保留了不同尺度
- 整车级SOA软件架构的革新
踏马潜行
智能驾驶-传感器SOASOA软件革新
在汽车行业,自动驾驶技术正成为创新的主要驱动力。为了满足日益增长的技术需求,整车级SOA(Service-OrientedArchitecture)软件架构正逐渐成为下一代自动驾驶系统的关键组成部分。SOA是一种设计方法论,它将系统划分为相互独立的服务,这些服务可以单独开发、部署和重复使用,从而实现软件的高内聚、低耦合。在传统的汽车软件架构中,软件通常被直接嵌入到硬件中,这导致了软件的可扩展性和可
- 论文笔记—NDT-Transformer: Large-Scale 3D Point Cloud Localization using the Normal Distribution Transfor
入门打工人
笔记slam定位算法
论文笔记—NDT-Transformer:Large-Scale3DPointCloudLocalizationusingtheNormalDistributionTransformRepresentation文章摘要~~~~~~~在GPS挑战的环境中,自动驾驶对基于3D点云的地点识别有很高的要求,并且是基于激光雷达的SLAM系统的重要组成部分(即闭环检测)。本文提出了一种名为NDT-Transf
- 汽车智能驾驶算法汇总
芊言芊语
汽车算法
汽车智能驾驶算法是自动驾驶技术的核心,它们集成了多个学科的知识,包括计算机视觉、机器学习、控制理论、路径规划等。以下是对汽车智能驾驶算法的一个详细汇总,内容分为几个关键部分进行阐述。一、计算机视觉算法计算机视觉是智能驾驶算法中用于识别和理解环境的关键技术。它主要包括图像处理、特征提取和对象识别等步骤。图像处理:通过摄像头等设备获取车辆前方的图像,然后进行预处理,如灰度化、二值化、滤波等操作,以提高
- 2023-08-15《苏东坡》纪录片1
每天坚持
20230815四点三十七星期二《苏东坡》纪录片1昨天上午把儿女妻送到龙门高铁站,我就回来了,开的是孩子姨家的油电混用的新能源车,电还没有用完,感觉新能源车真的是很省油,将来要是能自动驾驶能普及的话这个社会会有很大的进步。昨天中午在老城吃一碗凉皮,去对面吃了一点卤猪肉,下午睡到天黑,中间爹来,今天爸妈准备出院,晚上吃了油皮面和豆腐皮,油泼面现在涨价到八元了,吃过饭之后去领鸡蛋。昨天晚上我开的空调应
- 基于深度学习的动态场景理解
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的动态场景理解是一种通过计算机视觉技术自动分析和解释动态环境中物体、事件和交互的能力。该技术在自动驾驶、智能监控、机器人导航、增强现实等领域有着广泛应用,通过深度学习模型,特别是卷积神经网络(CNNs)、递归神经网络(RNNs)、图神经网络(GNNs)等,对复杂动态场景进行实时解读。1.动态场景理解的核心技术1.1卷积神经网络(CNNs)**卷积神经网络(CNNs)**擅长处理图像数据
- (游戏设计草稿) 《外卖员模拟器》 (3D 科幻 角色扮演 开放世界 AI VR)
穷人小水滴
游戏人工智能科幻vr元宇宙
游戏名称:外卖员模拟器.游戏类型:3D,科幻,角色扮演(RPG),开放世界,AI,VR.游戏的主要目的:技术测试/验证.1文案(超低空科幻流派)2030年,基于AI(人工智能)的自动驾驶和人形机器人技术已经大规模普及使用,但是AI的能力遭遇了瓶颈,AI只能解决99%的问题,而对于这最后1%的问题,却无论如何也解决不了,仍然需要人工处理.你是一个25岁的年轻人,居住在城市郊区破败的贫民窟.但是生活并
- 7. 深度强化学习:智能体的学习与决策
Network_Engineer
机器学习学习机器学习深度学习神经网络python算法
引言深度强化学习结合了强化学习与深度学习的优势,通过智能体与环境的交互,使得智能体能够学习最优的决策策略。深度强化学习在自动驾驶、游戏AI、机器人控制等领域表现出色,推动了人工智能的快速发展。本篇博文将深入探讨深度强化学习的基本框架、经典算法(如DQN、策略梯度法),以及其在实际应用中的成功案例。1.强化学习的基本框架强化学习是机器学习的一个分支,专注于智能体在与环境的交互过程中,学习如何通过最大
- 【IT】软件行业发展的前瞻性和希望的广度
天若有情673
人工智能
我说一下我对程序应用的一个看法就是我其实个人不太建议自动驾驶技术的发展因为这个东西它说到底还是什么那么一点安全隐患,虽然我们平常考虑用同时实行各种各样的高级的自动作用,但是自动驾驶可能是个特例,其实我个人觉得程序可以在以下方面发展1.医学(包括诊断治疗手术等)因为现在也有很多的疾病是医学还没有能力去解决的,2.国防有的时候因为国家安全真的非常重要的,因为我们每个人都希望有一个国泰民安的和平环境.3
- 【关于车载测试的基础知识的认知详解】
@逝水流年轻染尘@
门控循环单元车载系统汽车51单片机
目录一、目前车企的趋势1.电动化:2.自动驾驶技术:3.车联网(ConnectedCars):4.智能化和数字化:5.安全性:6.轻量化:7.个性化和定制化:8.供应链和制造创新:9.法规和政策:10.竞争格局变化:二、汽车域控的介绍1.动力域(PowertrainDomain):2.底盘域(ChassisDomain):3.车身域(BodyDomain):4.座舱域(CockpitDomain)
- 车载测试| 汽车的五域架构 (含线控技术知识)
squirrel快乐敲码
汽车架构
汽车的五域架构是一种将汽车电子控制系统按照功能进行划分的架构模式,主要包括动力域、底盘域、座舱域、自动驾驶域和车身域。(汽车三域架构通常是指将汽车电子系统划分为三个主要领域:动力域、底盘域和智能座舱域(或车身舒适域))以下是对这五个域的详细介绍:1、**动力域**:**功能**:动力域控制器是智能化的动力总成管理单元,主要功能包括对多种动力系统单元(如内燃机、电动机/发电机、电池、变速箱等)进行计
- 第15篇 运用指挥家思维模型开发自动驾驶算法
墨客云开
如何带领一个团队共同开发一项自动驾驶功能,问题边界和指挥家问题边界是相似的,首先,各个算法工程师都是在有明确边界下的内部协作,共同开发一个新功能;其次,最终集成后呈现的功能是前期可调试测试的。第一,要抓住“功能应用边界”关键点和指挥家一样,算法团队的负责人无法做到精通每一个子技术领域的算法,但却需要把控好整个团队的工作方向。感知,决策,控制,每一个子领域的算法开发都有解决不完的问题,团队负责人要做
- 一文让你搞懂什么是AI大模型
码上飞扬
人工智能大模型AI
近年来,人工智能(AI)技术飞速发展,特别是大模型的出现,给各行各业带来了巨大的变革。无论是自然语言处理、图像识别,还是自动驾驶,AI大模型都展现出了强大的能力和广泛的应用前景。那么,什么是AI大模型?它们有哪些特点和应用场景?本文将带你一探究竟。目录AI大模型的定义AI大模型的发展历程AI大模型的特点AI大模型的应用场景如何训练和使用AI大模型AI大模型的挑战与未来1.AI大模型的定义AI大模型
- 数据分析-13-时间序列异常值检测的类型及常见的检测方法
皮皮冰燃
数据分析数据分析
参考时间序列异常值的分类及检测参考异常值数据预警分析1时间序列异常的类型时间序列异常检测是数据处理和分析的重要环节,广泛应用于量化交易、网络安全检测、自动驾驶汽车和大型工业设备日常维护等领域。在时间序列数据中,异常通常指的是与正常数据模式显著不同的数据点,可能由系统故障、错误或外部干扰引起。异常数据,也称为离群点,是指在数据集中与其他数据点明显不同的样本。这些数据点往往不符合预期的模式或行为,可能
- 比亚迪方程豹携手华为乾崑智驾,开放合作,加速中国智驾技术向前
科技真优趣
汽车
在智能化领域,比亚迪很早就开始布局,在行业最早提出“上半场是电动化、下半场是智能化”。当前,比亚迪L2级智能驾驶搭载量已突破350万,智驾数据基座稳居全球第一梯队。同时,比亚迪是获得全国第一张高快速路段有条件自动驾驶(L3级)测试牌照,也是国内首批获得L3准入的车企。比亚迪拥有超四千名工程师的智驾研发队伍,构建起一套全栈自研的智驾研发体系,研发实力稳居行业第一梯队。比亚迪全栈自研的“天神之眼”高阶
- Python编码系列—Python项目架构的艺术:最佳实践与实战应用
学步_技术
Python编码python架构开发语言
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- 你不开车,车可不会自己走
小斌哥ge
了解AI人工智能自动驾驶
你不开车,车可不会自己走前言《人工不智能:计算机如何误解世界》由美国人工智能专家、数据记者梅瑞狄斯·布鲁萨德著。我看这本书已有很长一段时间,当时书中对自动驾驶的分析让我印象深刻,如自动驾驶的分级、电车难题等。2024年5月份,我国某互联网公司在一座一线城市发布和上线了最新版的自动驾驶汽车,他们自称新发布的大模型支持L4级自动驾驶。这次上线确实为乘客提供了出行服务,不是“即将推出”、不是“将来会有一
- 支持萝卜快跑:AI能否颠覆出租车与外卖行业?
ai_xiaogui
人工智能
在人工智能技术快速发展的背景下,自动驾驶技术正在逐步渗透到各行各业,其中最为人瞩目的莫过于出行和餐饮配送领域。萝卜快跑作为一个代表性的自动驾驶项目,引发了广泛的讨论。本文将探讨AI技术在出租车和外卖送餐行业的应用前景,并邀请持不同意见的朋友提出他们的观点,以期达成共识。一、引言简述AI技术的发展及其在交通和餐饮配送领域的应用。引出文章主题——萝卜快跑项目及其对传统行业的潜在影响。二、萝卜快跑项目简
- 基于Frenet坐标系的无人车路径规划:ROS实现与Python程序详解
快撑死的鱼
算法杂谈python算法解析硬件算法实践python开发语言
基于Frenet坐标系的无人车路径规划:ROS实现与Python程序详解前言在自动驾驶和无人车技术快速发展的今天,路径规划是实现车辆自主行驶的核心技术之一。本文将详细介绍基于Frenet坐标系的无人车路径规划,并结合ROS(RobotOperatingSystem)和Python程序进行实现。通过系统的讲解和实例代码,帮助读者深入理解这一技术,并能够在实际项目中应用。Frenet坐标系简介什么是F
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理