关于IEEEAccess中伪代码的格式小结

目前遇到的伪代码主要用了三种: algorithmic, algorithmicx, algorithm2e

大致的格式如下

\begin{algorithm} \caption{Algorithm caption} \label{alg:algorithm-label} \begin{algorithmic} ... Your pseudocode ... \end{algorithmic} \end{algorithm}

大部分的样式都是包含在algorithm中的,其中algorithmicx 搭配 algpseudocode(伪代码的格式)的样式可以满足大部分的需求,algorithm2e类型较前两种语法上复杂一点
下面给出这三种的几个例子

Algorithmic
代码:

\begin{algorithm}[h]
\caption{An example for format For \& While Loop in Algorithm}
\begin{algorithmic}[1]
\For{each $i\in [1,9]$}
\State initialize a tree $T_{i}$ with only a leaf (the root);
\State $T=T\cup T_{i};$
\EndFor
\ForAll {$c$ such that $c\in RecentMBatch(E_{n-1})$}
\label{code:TrainBase:getc}
\State $T=T\cup PosSample(c)$;
\label{code:TrainBase:pos}
\EndFor;
\For{$i=1$; $i \State $//$ Your source here;
\EndFor
\For{$i=1$ to $n$}
\State $//$ Your source here;
\EndFor
\State $//$ Reusing recent base classifiers.
\label{code:recentStart}
\While {$(|E_n| \leq L_1 )and( D \neq \phi)$}
\State Selecting the most recent classifier $c_i$ from $D$;
\State $D=D-c_i$;
\State $E_n=E_n+c_i$;
\EndWhile
\label{code:recentEnd}
\end{algorithmic}
\end{algorithm}

关于IEEEAccess中伪代码的格式小结_第1张图片

 
   
Algorithmicx

前期准备:

\usepackage[top=2cm, bottom=2cm, left=2cm, right=2cm]{geometry}
\usepackage{algorithm}
\usepackage{algorithmicx}
\usepackage{algpseudocode}
\usepackage{amsmath}

\floatname{algorithm}{算法}
\renewcommand{\algorithmicrequire}{\textbf{输入:}}
\renewcommand{\algorithmicensure}{\textbf{输出:}}

 

代码:

\begin{algorithm}
\caption{用归并排序求逆序数}
\begin{algorithmic}[1] %每行显示行号
\Require $Array$数组,$n$数组大小
\Ensure 逆序数
\Function {MergerSort}{$Array, left, right$}
\State $result \gets 0$
\If {$left < right$}
\State $middle \gets (left + right) / 2$
\State $result \gets result +$ \Call{MergerSort}{$Array, left, middle$}
\State $result \gets result +$ \Call{MergerSort}{$Array, middle, right$}
\State $result \gets result +$ \Call{Merger}{$Array,left,middle,right$}
\EndIf
\State \Return{$result$}
\EndFunction
\State
\Function{Merger}{$Array, left, middle, right$}
\State $i\gets left$
\State $j\gets middle$
\State $k\gets 0$
\State $result \gets 0$
\While{$i \If{$Array[i] \State $B[k++]\gets Array[i++]$
\Else
\State $B[k++] \gets Array[j++]$
\State $result \gets result + (middle - i)$
\EndIf
\EndWhile
\While{$i \State $B[k++] \gets Array[i++]$
\EndWhile
\While{$j \State $B[k++] \gets Array[j++]$
\EndWhile
\For{$i = 0 \to k-1$}
\State $Array[left + i] \gets B[i]$
\EndFor
\State \Return{$result$}
\EndFunction
\end{algorithmic}
\end{algorithm}

 

流程图:

关于IEEEAccess中伪代码的格式小结_第2张图片

 

Algorithm2e

准备工作:

%% 防止冲突所加

\makeatletter
\newif\if@restonecol
\makeatother
\let\algorithm\relax
\let\endalgorithm\relax
\usepackage[linesnumbered,ruled,vlined]{algorithm2e}%[ruled,vlined]{
\usepackage{algpseudocode}
\usepackage{amsmath}
\renewcommand{\algorithmicrequire}{\textbf{Input:}} % Use Input in the format of Algorithm
\renewcommand{\algorithmicensure}{\textbf{Output:}} % Use Output in the format of Algorithm

 

 

代码:

\begin{algorithm}
\caption{identify Row Context}
\KwIn{$r_i$, $Backgrd(T_i)$=${T_1,T_2,\ldots ,T_n}$ and similarity threshold $\theta_r$}
\KwOut{$con(r_i)$}
$con(r_i)= \Phi$\;
\For{$j=1;j \le n;j \ne i$}
{
float $maxSim=0$\;
$r^{maxSim}=null$\;
\While{not end of $T_j$}
{
compute Jaro($r_i,r_m$)($r_m\in T_j$)\;
\If{$(Jaro(r_i,r_m) \ge \theta_r)\wedge (Jaro(r_i,r_m)\ge r^{maxSim})$}
{
replace $r^{maxSim}$ with $r_m$\;
}
}
$con(r_i)=con(r_i)\cup {r^{maxSim}}$\;
}
return $con(r_i)$\;
\end{algorithm}

 

流程图:

关于IEEEAccess中伪代码的格式小结_第3张图片





 

转载于:https://www.cnblogs.com/Lisamon/p/11156538.html

你可能感兴趣的:(关于IEEEAccess中伪代码的格式小结)