( tan x ) ′ (\tan x)^{\prime} (tanx)′ | sec 2 x \sec^{2} x sec2x |
---|---|
( sec x ) ′ \sec x)^{\prime} secx)′ | tan x ⋅ sec x \tan x \cdot \sec x tanx⋅secx |
( cot x ) ′ (\cot x)^{\prime} (cotx)′ | − csc 2 x -\csc^{2} x −csc2x |
( csc x ) ′ (\csc x)^{\prime} (cscx)′ | cot x ⋅ csc x \cot x \cdot \csc x cotx⋅cscx |
∫ sec x d x = ∫ sec x ( sec x + tan x ) sec x + tan x d x = ∫ d ( tan x + sec x ) sec x + tan x = ln ∣ sec x + tan x ∣ + C \int \sec x dx= \int \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x} d x = \int \frac{d(\tan x + \sec x)}{\sec x + \tan x} = \ln |\sec x + \tan x| + C ∫secxdx=∫secx+tanxsecx(secx+tanx)dx=∫secx+tanxd(tanx+secx)=ln∣secx+tanx∣+C
∫ csc x d x = ∫ csc x ( csc x − cot x ) csc x − cot x d x = ∫ d ( csc x − cot x ) csc x − cot x = ln ∣ csc x − cot x ∣ + C = ∫ 1 sin x d x = ∫ cos x 2 sin x 2 1 2 cos 2 x 2 d x = ∫ 1 tan x 2 d tan x 2 = ln ∣ tan x 2 ∣ + C \int \csc x dx = \int \frac{\csc x (\csc x - \cot x)}{\csc x - \cot x} d x = \int \frac{d(\csc x - \cot x)}{\csc x - \cot x} = \ln |\csc x - \cot x| + C=\int \frac{1}{\sin x} dx = \int \frac{\cos \frac{x}{2}}{\sin \frac{x}{2}} \frac{1}{2 \cos ^{2} \frac{x}{2}} d x =\int \frac{1}{\tan \frac{x}{2}} d \tan \frac{x}{2} =\ln |\tan \frac{x}{2} |+C ∫cscxdx=∫cscx−cotxcscx(cscx−cotx)dx=∫cscx−cotxd(cscx−cotx)=ln∣cscx−cotx∣+C=∫sinx1dx=∫sin2xcos2x2cos22x1dx=∫tan2x1dtan2x=ln∣tan2x∣+C
( arctan x ) ′ (\arctan x)^{\prime} (arctanx)′ | 1 1 + x 2 \frac{1}{1+x^{2}} 1+x21 |
---|---|
( a r c cot x ) ′ (arc \cot x)^{\prime} (arccotx)′ | − 1 1 + x 2 -\frac{1}{1+x^{2}} −1+x21 |
( arcsin x ) ′ (\arcsin x)^{\prime} (arcsinx)′ | 1 1 − x 2 \frac{1}{\sqrt{1-x^{2}}} 1−x21 |
( arccos x ) ′ (\arccos x)^{\prime} (arccosx)′ | − 1 1 − x 2 -\frac{1}{\sqrt{1-x^{2}}} −1−x21 |
(导数公式证明: ( arctan x ) ′ = 1 tan ′ ( arctan x ) = 1 1 + tan 2 ( arctan x ) = 1 1 + x 2 (\arctan x)^{\prime}=\frac{1}{\tan^{\prime}(\arctan x)}=\frac{1}{1+\tan^{2}(\arctan x)}=\frac{1}{1+x^{2}} (arctanx)′=tan′(arctanx)1=1+tan2(arctanx)1=1+x21 ,其他应用反函数求导公式,证明类似)
∫ a a 2 + x 2 d x = arctan x a + C \int \frac{a}{a^{2}+x^{2}} d x=\arctan \frac{x}{a}+C ∫a2+x2adx=arctanax+C
∫ 1 a 2 − x 2 d x = arcsin x a + C \int \frac{1}{\sqrt{a^{2}-x^{2}}} \mathrm{d} x=\arcsin \frac{x}{a}+C ∫a2−x21dx=arcsinax+C
由:
∫ d x x 2 − a 2 ⇒ x = a sec x ln ∣ sec t + tan t ∣ + C = ln ∣ sec ( sec − 1 ( x / a ) ) + tan ( sec − 1 ( x / a ) ) ∣ + C = ln ∣ sec ( sec − 1 ( x / a ) ) + sec ( sec − 1 ( x / a ) ) − 1 ∣ + C = ln ∣ x + x 2 − a 2 ∣ + C \int \frac{d x}{\sqrt{x^{2} - a^{2}}} \xRightarrow{x=a\sec x}\ln |\sec t + \tan t| + C = \ln |\sec (\sec^{-1} (x/a)) + \tan (\sec^{-1} (x/a))| + C = \ln |\sec (\sec^{-1} (x/a)) + \sqrt{\sec(\sec^{-1} (x/a))-1}| + C = \ln |x + \sqrt{x^{2} - a^{2}}| + C ∫x2−a2dxx=asecxln∣sect+tant∣+C=ln∣sec(sec−1(x/a))+tan(sec−1(x/a))∣+C=ln∣sec(sec−1(x/a))+sec(sec−1(x/a))−1∣+C=ln∣x+x2−a2∣+C
∫ d x x 2 + a 2 ⇒ x = a tan x ln ∣ sec x + tan x ∣ + C = ln ∣ sec ( tan − 1 ( x / a ) ) + tan ( tan − 1 ( x / a ) ) ∣ + C = ln ∣ tan ( tan − 1 ( x / a ) ) + 1 + tan ( tan − 1 ( x / a ) ) ∣ + C = ln ∣ x + x 2 + a 2 ∣ + C \int \frac{d x}{\sqrt{x^{2} + a^{2}}}\xRightarrow{x=a\tan x} \ln |\sec x + \tan x| + C = \ln |\sec(\tan^{-1} (x/a)) + \tan(\tan^{-1} (x/a))| + C = \ln |\sqrt{\tan(\tan^{-1} (x/a))+1} + \tan(\tan^{-1} (x/a))| + C = \ln |x + \sqrt{x^{2} + a^{2}}| + C ∫x2+a2dxx=atanxln∣secx+tanx∣+C=ln∣sec(tan−1(x/a))+tan(tan−1(x/a))∣+C=ln∣tan(tan−1(x/a))+1+tan(tan−1(x/a))∣+C=ln∣x+x2+a2∣+C
得:
∫ d x x 2 ± a 2 = ln ∣ x + x 2 ± a 2 ∣ + C \int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\ln |x+\sqrt{x^{2} \pm a^{2}}|+C ∫x2±a2dx=ln∣x+x2±a2∣+C
解法一:
∫ 1 1 + sin θ d θ = ∫ 1 − sin θ cos 2 θ d θ = ∫ 1 cos 2 θ d θ − ∫ sin θ cos 2 θ d θ = tan θ − sec θ + C \begin{array}{l} \int \frac{1}{1+\sin \theta} d \theta \\ =\int \frac{1-\sin \theta}{\cos ^{2} \theta} d \theta \\ =\int \frac{1}{\cos ^{2} \theta} d \theta-\int \frac{\sin \theta}{\cos ^{2} \theta} d \theta \\ =\tan \theta-\sec \theta+C \end{array} ∫1+sinθ1dθ=∫cos2θ1−sinθdθ=∫cos2θ1dθ−∫cos2θsinθdθ=tanθ−secθ+C
解法二:
万能代换: tan x 2 = t , sin x = 2 t 1 + t 2 , cos x = 1 − t 2 1 + t 2 , d x = 2 1 + t 2 d t \tan \frac{x}{2}=t, \sin x= \frac{2t}{1+t^{2}},\cos x = \frac{1-t^{2}}{1+t^{2}},dx=\frac{2}{1+t^{2}}dt tan2x=t,sinx=1+t22t,cosx=1+t21−t2,dx=1+t22dt
∫ 1 1 + sin x d x = ∫ 1 1 + 2 tan x 2 1 + tan 2 x 2 d x = ∫ sec 2 x 2 ( 1 + tan x 2 ) 2 d x = ∫ 2 ( 1 + tan x 2 ) 2 d tan 2 x 2 = − 2 tan x 2 \int \frac{1}{1+\sin x} dx=\int \frac{1}{1+\frac{2\tan\frac{x}{2}}{1+\tan^{2}\frac{x}{2}}}dx=\int \frac{\sec^{2}\frac{x}{2}}{(1+\tan \frac{x}{2})^{2}}dx=\int \frac{2}{(1+\tan\frac{x}{2})^{2}}d\tan^{2}\frac{x}{2}=-\frac{2}{\tan\frac{x}{2}} ∫1+sinx1dx=∫1+1+tan22x2tan2x1dx=∫(1+tan2x)2sec22xdx=∫(1+tan2x)22dtan22x=−tan2x2
解法三(和万能代换异曲同工):
∫ 1 1 + sin x d x = ∫ 1 sin 2 x 2 + cos 2 x 2 + 2 sin x 2 cos x 2 d x = 2 ∫ sec 2 x 2 tan 2 x 2 + 2 tan x 2 + 1 d x 2 = − 2 1 + tan x 2 + C = 2 1 + cot x 2 + C ( 上 下 同 除 sin 2 x ) \int \frac{1}{1+\sin x}dx=\int \frac{1}{\sin ^{2}\frac{x}{2}+\cos ^{2}\frac{x}{2}+2\sin \frac{x}{2}\cos \frac{x}{2}}dx=2\int \frac{\sec^{2}\frac{x}{2}}{\tan^{2}\frac{x}{2}+2\tan\frac{x}{2}+1}d\frac{x}{2}=-\frac{2}{1+\tan\frac{x}{2}}+C=\frac{2}{1+\cot\frac{x}{2}}+C(上下同除\sin ^{2}x) ∫1+sinx1dx=∫sin22x+cos22x+2sin2xcos2x1dx=2∫tan22x+2tan2x+1sec22xd2x=−1+tan2x2+C=1+cot2x2+C(上下同除sin2x)
∫ 1 ( 1 + sin x ) 2 d x = ∫ d x ( sin x 2 + cos x 2 ) 4 = 1 4 ∫ d x cos 4 ( x 2 − π 4 ) = 1 2 ∫ sec 2 ( x 2 − π 4 ) d tan ( x 2 − π 4 ) = 1 2 ∫ [ 1 + tan 2 ( x 2 − π 4 ) ] d tan ( x 2 − π 4 ) = 1 2 [ tan ( x 2 − π 4 ) + 1 3 tan 3 ( x 2 − π 4 ) ] \begin{array}{l} \int \frac{1}{(1+\sin x)^{2}} dx \\ =\int \frac{dx}{(\sin \frac{x}{2}+\cos \frac{x}{2})^{4}} \\ =\frac{1}{4} \int \frac{dx}{\cos ^{4}(\frac{x}{2}-\frac{\pi}{4})} \\ =\frac{1}{2}\int \sec^{2}(\frac{x}{2}-\frac{\pi}{4})d\tan(\frac{x}{2}-\frac{\pi}{4}) \\ =\frac{1}{2}\int [1+\tan^{2}(\frac{x}{2}-\frac{\pi}{4})]d\tan(\frac{x}{2}-\frac{\pi}{4}) \\ =\frac{1}{2}[\tan(\frac{x}{2}-\frac{\pi}{4})+\frac{1}{3}\tan^{3}(\frac{x}{2}-\frac{\pi}{4})] \end{array} ∫(1+sinx)21dx=∫(sin2x+cos2x)4dx=41∫cos4(2x−4π)dx=21∫sec2(2x−4π)dtan(2x−4π)=21∫[1+tan2(2x−4π)]dtan(2x−4π)=21[tan(2x−4π)+31tan3(2x−4π)]
∫ 0 π 2 sin n x d x = ∫ 0 π 2 cos n x d x = ( n − 1 ) ! ! n ! ! H \int_{0}^{\frac{\pi}{2}}\sin^{n}xdx=\int_{0}^{\frac{\pi}{2}}\cos^{n}xdx=\frac{(n-1)!!}{n!!}H ∫02πsinnxdx=∫02πcosnxdx=n!!(n−1)!!H
n 为偶数,H 取 π/2,n 为奇数,H 取 1.
∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int_{a}^{b}f(x)dx=\int_{a}^{b}f(a+b-x)dx ∫abf(x)dx=∫abf(a+b−x)dx
适合处理包含三角函数的积分问题
∫ 0 π 2 f ( sin x ) d x = ∫ 0 π 2 f ( cos x ) d x \int_{0}^{\frac{\pi}{2}}f(\sin x)dx=\int_{0}^{\frac{\pi}{2}}f(\cos x)dx ∫02πf(sinx)dx=∫02πf(cosx)dx
∫ 0 π x f ( sin x ) d x = π 2 ∫ 0 π f ( sin x ) d x \int_{0}^{\pi}xf(\sin x)dx=\frac{\pi}{2}\int_{0}^{\pi}f(\sin x)dx ∫0πxf(sinx)dx=2π∫0πf(sinx)dx(易从区间再现公式推导)
y 1 ( x ) , y 2 ( x ) , x = a , x = b ( y 2 ( x ) ≥ y 1 ( x ) ≥ 0 ) y_{1}(x), y_{2}(x), x=a, x=b(y_{2}(x)\ge y_{1}(x)\ge 0) y1(x),y2(x),x=a,x=b(y2(x)≥y1(x)≥0) 围成的区域绕 x 轴旋转一周的旋转体体积
V = π ∫ a b [ y 2 2 ( x ) − y 1 2 ( x ) ] d x , a < b V=\pi \int_{a}^{b}\left[y_{2}^{2}(x)-y_{1}^{2}(x)\right] \mathrm{d} x, aV=π∫ab[y22(x)−y12(x)]dx,a<b
y 1 ( x ) , y 2 ( x ) , x = a , x = b ( y 2 ( x ) ≥ y 1 ( x ) b > a ≥ 0 ) y_{1}(x), y_{2}(x), x=a, x=b(y_{2}(x)\ge y_{1}(x) \quad b>a\ge 0) y1(x),y2(x),x=a,x=b(y2(x)≥y1(x)b>a≥0) 围成的区域绕 y 轴旋转一周的旋转体体积
V = 2 π ∫ a b x ( y 2 ( x ) − y 1 ( x ) ) d x V=2 \pi \int_{a}^{b} x\left(y_{2}(x)-y_{1}(x)\right) \mathrm{d} x V=2π∫abx(y2(x)−y1(x))dx
解法一(极坐标):
I = ∫ − ∞ + ∞ e − x 2 d x = 2 ∫ 0 + ∞ e − x 2 d x = 2 A I=\int \limits_{-\infin}^{+\infin}e^{-x^{2}} d x=2\int \limits_{0}^{+\infin}e^{-x^{2}} d x=2A I=−∞∫+∞e−x2dx=20∫+∞e−x2dx=2A
A 2 = ∫ 0 + ∞ e − x 2 d x ⋅ ∫ 0 + ∞ e − y 2 d y = ∬ x , y > 0 e − ( x 2 + y 2 ) d x d y = ∫ 0 π 2 d θ ∫ 0 + ∞ e − ρ 2 ρ d ρ = π 2 ( − 1 2 e − ρ 2 ) ∣ 0 + ∞ = π 4 A^{2}=\int\limits_{0}^{+\infin}e^{-x^{2}}dx \cdot \int \limits _{0}^{+\infin}e^{-y^{2}}dy=\iint\limits_{x,y>0}e^{-(x^{2}+y^{2})}dxdy=\int\limits_{0}^{\frac{\pi}{2}}d\theta \int\limits_{0}^{+\infin}e^{-\rho^{2}}\rho d\rho = \frac{\pi}{2}(-\frac{1}{2}e^{-\rho^{2}})|_{0}^{+\infin}=\frac{\pi}{4} A2=0∫+∞e−x2dx⋅0∫+∞e−y2dy=x,y>0∬e−(x2+y2)dxdy=0∫2πdθ0∫+∞e−ρ2ρdρ=2π(−21e−ρ2)∣0+∞=4π
I = π I = \sqrt{\pi} I=π
解法二(变量代换、凑微分):
Let I = ∫ − ∞ + ∞ e − x 2 d x = 2 ∫ 0 ∞ e − x 2 d x I 2 = 4 ( ∫ 0 ∞ e − x 2 d x ) ( ∫ 0 ∞ e − y 2 d y ) = 4 ∫ 0 ∞ ∫ 0 ∞ e − ( x 2 + y 2 ) d x d y = 4 ∫ 0 ∞ ∫ 0 ∞ e − x 2 ( 1 + y 2 / x 2 ) d x d y , { y / x = u d y = x d u = 4 ∫ 0 ∞ ∫ 0 ∞ e − x 2 ( 1 + u 2 ) x d x d u = ( 4 ) ( − 1 2 ) ∫ 0 ∞ 1 1 + u 2 d u ∫ 0 ∞ e − x 2 ( 1 + u 2 ) d ( − x 2 ( 1 + u 2 ) ) = − 2 ∫ 0 ∞ 1 1 + u 2 ( e − x 2 ( 1 + u 2 ) ) 0 ∞ d u = 2 ∫ 0 ∞ d u 1 + u 2 = ( 2 ) ( π 2 ) = π ∵ I > 0 ∴ I = π \begin{aligned} &\text {Let } I=\int_{-\infty}^{+\infty} e^{-x^{2}} d x=2 \int_{0}^{\infty} e^{-x^{2}} d x\\ &I^{2}=4\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)\left(\int_{0}^{\infty} e^{-y^{2}} d y\right)\\ &=4 \int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y\\ &=4 \int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}\left(1+y^{2} / x^{2}\right)} d x d y,\left\{\begin{array}{l} y / x=u \\ d y=x d u \end{array}\right.\\ &=4 \int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}\left(1+u^{2}\right)} x d x d u\\ &=(4)\left(-\frac{1}{2}\right) \int_{0}^{\infty} \frac{1}{1+u^{2}} d u \int_{0}^{\infty} e^{-x^{2}\left(1+u^{2}\right)} d\left(-x^{2}\left(1+u^{2}\right)\right)\\ &=-2 \int_{0}^{\infty} \frac{1}{1+u^{2}}\left(e^{-x^{2}\left(1+u^{2}\right)}\right)_{0}^{\infty} d u\\ &=2 \int_{0}^{\infty} \frac{d u}{1+u^{2}}\\ &=(2)\left(\frac{\pi}{2}\right)\\ &=\pi\\ &\because I>0\\ &\therefore I=\sqrt{\pi} \end{aligned} Let I=∫−∞+∞e−x2dx=2∫0∞e−x2dxI2=4(∫0∞e−x2dx)(∫0∞e−y2dy)=4∫0∞∫0∞e−(x2+y2)dxdy=4∫0∞∫0∞e−x2(1+y2/x2)dxdy,{y/x=udy=xdu=4∫0∞∫0∞e−x2(1+u2)xdxdu=(4)(−21)∫0∞1+u21du∫0∞e−x2(1+u2)d(−x2(1+u2))=−2∫0∞1+u21(e−x2(1+u2))0∞du=2∫0∞1+u2du=(2)(2π)=π∵I>0∴I=π
更多解法
利用留数定理:
∫ − ∞ ∞ sin ( x ) x d x = Im ( ∫ − ∞ ∞ e i z z d z ) \int_{-\infty}^{\infty} \frac{\sin (x)}{x} d x=\operatorname{Im}\left(\int_{-\infty}^{\infty} \frac{e^{i z}}{z} d z\right) ∫−∞∞xsin(x)dx=Im(∫−∞∞zeizdz)
函数 x i z z \frac{x^{iz}}{z} zxiz 只在实轴上有一个简单极点 z = 0 z=0 z=0 ,故:
∫ − ∞ + ∞ e i z z d z = 2 π i { 0 + 1 2 R e s [ e i z z , 0 ] } = π i lim z → 0 z e i z z = π i \int_{-\infin}^{+\infin}\frac{e^{iz}}{z}dz=2\pi i\{ 0+\frac{1}{2}Res[\frac{e^{iz}}{z}, 0] \}=\pi i \lim\limits_{z \to 0}z \frac{e^{iz}}{z}=\pi i ∫−∞+∞zeizdz=2πi{0+21Res[zeiz,0]}=πiz→0limzzeiz=πi,则: ∫ − ∞ ∞ sin x x d x = π \int_{-\infin}^{\infin} \frac{\sin x}{x} dx=\pi ∫−∞∞xsinxdx=π
更多解法
∫ a + ∞ d x x ln p x { 收敛, 当 p > 1 发散, 当 p ⩽ 1 \int_{a}^{+\infty} \frac{d x}{x \ln ^{p} x}\left\{\begin{array}{ll} \text { 收敛,} & \text { 当 } p>1 \\ \text { 发散,} & \text { 当 } p \leqslant 1 \end{array}\right. ∫a+∞xlnpxdx{ 收敛, 发散, 当 p>1 当 p⩽1
无穷区间
∫ 1 + ∞ d x x p { 收敛, 当 p > 1 发散, 当 p ⩽ 1 \int_{1}^{+\infty} \frac{d x}{x^{p}}\left\{\begin{array}{ll} \text { 收敛,} & \text { 当 } p>1 \\ \text { 发散,} & \text { 当 } p \leqslant 1 \end{array}\right. ∫1+∞xpdx{ 收敛, 发散, 当 p>1 当 p⩽1
无界函数
∫ 0 1 d x x p { 发散, 当 p > 1 收敛, 当 p ⩽ 1 \int_{0}^{1} \frac{d x}{x^{p}}\left\{\begin{array}{ll} \text { 发散,} & \text { 当 } p>1 \\ \text { 收敛,} & \text { 当 } p \leqslant 1 \end{array}\right. ∫01xpdx{ 发散, 收敛, 当 p>1 当 p⩽1