(十六)通俗易懂理解——PCA主成分分析算法原理

主成分分析在于降维,很多特征存在多重共线性,通过降维可以减少数据量,同时对结果产生影响又不大。以下是实例讲解主成分分析是如何做的,至于数学原理,有待以后补充(好像给自己挖了很多细节上的坑,内容太多了,现在就是想不断知道常用机器学习与深度学习的主流算法运用,至于细节原理还是需要后面慢慢啃)。

 

1. 问题

真实的训练数据总是存在各种各样的问题:

1、 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余。

2、 拿到一个数学系的本科生期末考试成绩单,里面有三列,一列是对数学的兴趣程度,一列是复习时间,还有一列是考试成绩。我们知道要学好数学,需要有浓厚的兴趣,所以第二项与第一项强相关,第三项和第二项也是强相关。那是不是可以合并第一项和第二项呢?

3、 拿到一个样本,特征非常多,而样例特别少,这样用回归去直接拟合非常困难,容易过度拟合。比如北京的房价:假设房子的特征是(大小、位置、朝向、是否学区房、建造年代、是否二手、层数、所在层数),搞了这么多特征,结果只有不到十个房子的样例。要拟合房子特征->房价的这么多特征,就会造成过度拟合。

4、 这个与第二个有点类似,假设在IR中我们建立的文档-词项矩阵中,有两个词项为“learn”和“study”,在传统的向量空间模型中,认为两者独立。然而从语义的角度来讲,两者是相似的,而且两者出现频率也类似,是不是可以合成为一个特征呢?

5、 在信号传输过程中,由于信道不是理想的,信道另一端收到的信号会有噪音扰动,那么怎么滤去这些噪音呢?

回顾我们之前介绍的《模型选择和规则化》,里面谈到的特征选择的问题。但在那篇中要剔除的特征主要是和类标签无关的特征。比如“学生的名字”就和他的“成绩”无关,使用的是互信息的方法。

而这里的特征很多是和类标签有关的,但里面存在噪声或者冗余。在这种情况下,需要一种特征降维的方法来减少特征数,减少噪音和冗余,减少过度拟合的可能性。

下面探讨一种称作主成分分析(PCA)的方法来解决部分上述问题。PCA的思想是将n维特征映射到k维上(k

 

2. PCA计算过程

首先介绍PCA的计算过程:

假设我们得到的2维数据如下:

(十六)通俗易懂理解——PCA主成分分析算法原理_第1张图片

行代表了样例,列代表特征,这里有10个样例,每个样例两个特征。可以这样认为,有10篇文档,x是10篇文档中“learn”出现的TF-IDF,y是10篇文档中“study”出现的TF-IDF。也可以认为有10辆汽车,x是千米/小时的速度,y是英里/小时的速度,等等。

第一步分别求x和y的平均值,然后对于所有的样例,都减去对应的均值。这里x的均值是1.81,y的均值是1.91,那么一个样例减去均值后即为(0.69,0.49),得到

(十六)通俗易懂理解——PCA主成分分析算法原理_第2张图片

第二步,求特征协方差矩阵,如果数据是3维,那么协方差矩阵是

这里只有x和y,求解得

对角线上分别是x和y的方差,非对角线上是协方差。协方差大于0表示x和y若有一个增,另一个也增;小于0表示一个增,一个减;协方差为0时,两者独立。协方差绝对值越大,两者对彼此的影响越大,反之越小。

第三步,求协方差的特征值和特征向量,得到

(十六)通俗易懂理解——PCA主成分分析算法原理_第3张图片

上面是两个特征值,下面是对应的特征向量,特征值0.0490833989对应特征向量为

,这里的特征向量都归一化为单位向量。

第四步,将特征值按照从大到小的顺序排序,选择其中最大的k个,然后将其对应的k个特征向量分别作为列向量组成特征向量矩阵。

这里特征值只有两个,我们选择其中最大的那个,这里是1.28402771,对应的特征向量是

第五步,将样本点投影到选取的特征向量上。假设样例数为m,特征数为n,减去均值后的样本矩阵为DataAdjust(m*n),协方差矩阵是n*n,选取的k个特征向量组成的矩阵为EigenVectors(n*k)。那么投影后的数据FinalData为

这里是

FinalData(10*1) = DataAdjust(10*2矩阵)×特征向量

得到结果是

(十六)通俗易懂理解——PCA主成分分析算法原理_第4张图片

这样,就将原始样例的n维特征变成了k维,这k维就是原始特征在k维上的投影。

上面的数据可以认为是learn和study特征融合为一个新的特征叫做LS特征,该特征基本上代表了这两个特征。

上述过程有个图描述:

(十六)通俗易懂理解——PCA主成分分析算法原理_第5张图片

正号表示预处理后的样本点,斜着的两条线就分别是正交的特征向量(由于协方差矩阵是对称的,因此其特征向量正交),最后一步的矩阵乘法就是将原始样本点分别往特征向量对应的轴上做投影。

如果取的k=2,那么结果是

(十六)通俗易懂理解——PCA主成分分析算法原理_第6张图片

这就是经过PCA处理后的样本数据,水平轴(上面举例为LS特征)基本上可以代表全部样本点。整个过程看起来就像将坐标系做了旋转,当然二维可以图形化表示,高维就不行了。上面的如果k=1,那么只会留下这里的水平轴,轴上是所有点在该轴的投影。

(十六)通俗易懂理解——PCA主成分分析算法原理_第7张图片

原文博客:https://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html

你可能感兴趣的:((十六)通俗易懂理解——PCA主成分分析算法原理)