十、自己动手实现------------“ AVL 二叉平衡树 ”

参考文章:

https://blog.csdn.net/qq_25940921/article/details/82183093           二叉查找树与平衡二叉树(强推

https://github.com/liuyubobobo/Play-with-Algorithms  

https://www.cnblogs.com/sench/p/7786718.html                              平衡二叉树(AVL树)

https://www.cnblogs.com/lezhifang/p/6632355.html                          二叉平衡树的平衡调整


温馨提示:

        AVL树是相对比较重要的数据结构,学起来会比较困难,建议有视频看视频,没视频找视频,看优质博客,拿出纸和笔,跟着走一遍,然后代码自己多捋几遍,这样会加深印象,并且也是对自己有帮助。这是我的笨方法,如果大神,请忽略啦┻┳|・ω・

 

上面有 二叉平衡树 的 原理讲解,下面直接上代码,代码参考的是 波波老师 的代码 ,很优美,看起来写的像诗。OK,废话少说,直接上代码。

 

AVL Tree  实现代码:

import java.util.ArrayList;

public class AVLTree, V> {

    private class Node{
        public K key;
        public V value;
        public Node left, right;
        public int height;

        public Node(K key, V value){
            this.key = key;
            this.value = value;
            left = null;
            right = null;
            height = 1;
        }
    }

    private Node root;
    private int size;

    public AVLTree(){
        root = null;
        size = 0;
    }

    public int getSize(){
        return size;
    }

    public boolean isEmpty(){
        return size == 0;
    }

    // 判断该二叉树是否是一棵二分搜索树
    public boolean isBST(){

        ArrayList keys = new ArrayList<>();
        inOrder(root, keys);
        for(int i = 1 ; i < keys.size() ; i ++)
            if(keys.get(i - 1).compareTo(keys.get(i)) > 0)
                return false;
        return true;
    }

    private void inOrder(Node node, ArrayList keys){

        if(node == null)
            return;

        inOrder(node.left, keys);
        keys.add(node.key);
        inOrder(node.right, keys);
    }

    // 判断该二叉树是否是一棵平衡二叉树
    public boolean isBalanced(){
        return isBalanced(root);
    }

    // 判断以Node为根的二叉树是否是一棵平衡二叉树,递归算法
    private boolean isBalanced(Node node){

        if(node == null)
            return true;

        int balanceFactor = getBalanceFactor(node);
        if(Math.abs(balanceFactor) > 1)
            return false;
        return isBalanced(node.left) && isBalanced(node.right);
    }

    // 获得节点node的高度
    private int getHeight(Node node){
        if(node == null)
            return 0;
        return node.height;
    }

    // 获得节点node的平衡因子
    private int getBalanceFactor(Node node){
        if(node == null)
            return 0;
        return getHeight(node.left) - getHeight(node.right);
    }

    // 对节点y进行向右旋转操作,返回旋转后新的根节点x
    //        y                              x
    //       / \                           /   \
    //      x   T4     向右旋转 (y)        z     y
    //     / \       - - - - - - - ->    / \   / \
    //    z   T3                       T1  T2 T3 T4
    //   / \
    // T1   T2
    private Node rightRotate(Node y) {
        Node x = y.left;
        Node T3 = x.right;

        // 向右旋转过程
        x.right = y;
        y.left = T3;

        // 更新height
        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

    // 对节点y进行向左旋转操作,返回旋转后新的根节点x
    //    y                             x
    //  /  \                          /   \
    // T1   x      向左旋转 (y)       y     z
    //     / \   - - - - - - - ->   / \   / \
    //   T2  z                     T1 T2 T3 T4
    //      / \
    //     T3 T4
    private Node leftRotate(Node y) {
        Node x = y.right;
        Node T2 = x.left;

        // 向左旋转过程
        x.left = y;
        y.right = T2;

        // 更新height
        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

    // 向二分搜索树中添加新的元素(key, value)
    public void add(K key, V value){
        root = add(root, key, value);
    }

    // 向以node为根的二分搜索树中插入元素(key, value),递归算法
    // 返回插入新节点后二分搜索树的根
    private Node add(Node node, K key, V value){

        if(node == null){
            size ++;
            return new Node(key, value);
        }

        if(key.compareTo(node.key) < 0)
            node.left = add(node.left, key, value);
        else if(key.compareTo(node.key) > 0)
            node.right = add(node.right, key, value);
        else // key.compareTo(node.key) == 0
            node.value = value;

        // 更新height
        node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(node);

        // 平衡维护
        // LL
        if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
            return rightRotate(node);

        // RR
        if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
            return leftRotate(node);

        // LR
        if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
            node.left = leftRotate(node.left);
            return rightRotate(node);
        }

        // RL
        if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }

        return node;
    }

    // 返回以node为根节点的二分搜索树中,key所在的节点
    private Node getNode(Node node, K key){

        if(node == null)
            return null;

        if(key.equals(node.key))
            return node;
        else if(key.compareTo(node.key) < 0)
            return getNode(node.left, key);
        else // if(key.compareTo(node.key) > 0)
            return getNode(node.right, key);
    }

    public boolean contains(K key){
        return getNode(root, key) != null;
    }

    public V get(K key){

        Node node = getNode(root, key);
        return node == null ? null : node.value;
    }

    public void set(K key, V newValue){
        Node node = getNode(root, key);
        if(node == null)
            throw new IllegalArgumentException(key + " doesn't exist!");

        node.value = newValue;
    }

    // 返回以node为根的二分搜索树的最小值所在的节点
    private Node minimum(Node node){
        if(node.left == null)
            return node;
        return minimum(node.left);
    }

    // 从二分搜索树中删除键为key的节点
    public V remove(K key){

        Node node = getNode(root, key);
        if(node != null){
            root = remove(root, key);
            return node.value;
        }
        return null;
    }

    private Node remove(Node node, K key){

        if( node == null )
            return null;

        Node retNode;
        if( key.compareTo(node.key) < 0 ){
            node.left = remove(node.left , key);
            // return node;
            retNode = node;
        }
        else if(key.compareTo(node.key) > 0 ){
            node.right = remove(node.right, key);
            // return node;
            retNode = node;
        }
        else{   // key.compareTo(node.key) == 0

            // 待删除节点左子树为空的情况
            if(node.left == null){
                Node rightNode = node.right;
                node.right = null;
                size --;
                // return rightNode;
                retNode = rightNode;
            }

            // 待删除节点右子树为空的情况
            else if(node.right == null){
                Node leftNode = node.left;
                node.left = null;
                size --;
                // return leftNode;
                retNode = leftNode;
            }

            // 待删除节点左右子树均不为空的情况
            else{
                // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
                // 用这个节点顶替待删除节点的位置
                Node successor = minimum(node.right);
                //successor.right = removeMin(node.right);
                successor.right = remove(node.right, successor.key);
                successor.left = node.left;

                node.left = node.right = null;

                // return successor;
                retNode = successor;
            }
        }

        if(retNode == null)
            return null;

        // 更新height
        retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(retNode);

        // 平衡维护
        // LL
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0)
            return rightRotate(retNode);

        // RR
        if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0)
            return leftRotate(retNode);

        // LR
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
            retNode.left = leftRotate(retNode.left);
            return rightRotate(retNode);
        }

        // RL
        if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
            retNode.right = rightRotate(retNode.right);
            return leftRotate(retNode);
        }
        return retNode;
    }
}

 

上面代码部分,将 AVL Tree 中的 添加、修改、删除、查询等操作,代码部分写的很详细。

 

         Map   和   Set   是两个抽象的数据结构,可以用  二分搜索树(BST)链表 (LinkedList )实现,也可以用 二叉平衡树(AVL Tree )实现。

         下面附上 用 AVL Tree 实现 Map Set  的代码部分:

Map:

public class AVLMap, V> implements Map {

    private AVLTree avl;

    public AVLMap(){
        avl = new AVLTree<>();
    }

    @Override
    public int getSize(){
        return avl.getSize();
    }

    @Override
    public boolean isEmpty(){
        return avl.isEmpty();
    }

    @Override
    public void add(K key, V value){
        avl.add(key, value);
    }

    @Override
    public boolean contains(K key){
        return avl.contains(key);
    }

    @Override
    public V get(K key){
        return avl.get(key);
    }

    @Override
    public void set(K key, V newValue){
        avl.set(key, newValue);
    }

    @Override
    public V remove(K key){
        return avl.remove(key);
    }
}

        

          通过以上可以看出, 用 AVL Tree 实现 Map 的代码非常简单,很多都是简单调用 AVL Tree 封装好的方法,在逻辑上将 Map 的各种操作都实现了。

 

Set :

public class AVLSet> implements Set {

    private AVLTree avl;

    public AVLSet(){
        avl = new AVLTree<>();
    }

    @Override
    public int getSize(){
        return avl.getSize();
    }

    @Override
    public boolean isEmpty(){
        return avl.isEmpty();
    }

    @Override
    public void add(E e){
        avl.add(e, null);
    }

    @Override
    public boolean contains(E e){
        return avl.contains(e);
    }

    @Override
    public void remove(E e){
        avl.remove(e);
    }
}

 

 

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(数据结构和算法,数据结构和算法(Java语言))