opencv2实现单张图片的路线路牌检测_计算机视觉大作业2

有好多代码没有用

linefiner.h

#if !defined LINEF
#define LINEF
#include
#include 
#include 
#define PI 3.1415926

class LineFinder {

  private:

	  // original image
	  cv::Mat img;

	  // vector containing the end points 
	  // of the detected lines
	  std::vector lines;

	  // accumulator resolution parameters
	  double deltaRho;
	  double deltaTheta;

	  // minimum number of votes that a line 
	  // must receive before being considered
	  int minVote;

	  // min length for a line
	  double minLength;

	  // max allowed gap along the line
	  double maxGap;

  public:

	  // Default accumulator resolution is 1 pixel by 1 degree
	  // no gap, no mimimum length
	  LineFinder() : deltaRho(1), deltaTheta(PI/180), minVote(10), minLength(0.), maxGap(0.) {}

	  // Set the resolution of the accumulator
	  void setAccResolution(double dRho, double dTheta) {

		  deltaRho= dRho;
		  deltaTheta= dTheta;
	  }

	  // Set the minimum number of votes
	  void setMinVote(int minv) {

		  minVote= minv;
	  }

	  // Set line length and gap
	  void setLineLengthAndGap(double length, double gap) {

		  minLength= length;
		  maxGap= gap;
	  }

	  // Apply probabilistic Hough Transform
	  std::vector findLines(cv::Mat& binary) {

		  lines.clear();
		  cv::HoughLinesP(binary,lines,deltaRho,deltaTheta,minVote, minLength, maxGap);

		  return lines;
	  }

	  // Draw the detected lines on an image
	  void drawDetectedLines(cv::Mat &image, cv::Scalar color=cv::Scalar(255,0,0)) {
	
		  // Draw the lines
		  std::vector::const_iterator it2= lines.begin();
	
		  while (it2!=lines.end()) {
		
			  cv::Point pt1((*it2)[0],(*it2)[1]);        
			  cv::Point pt2((*it2)[2],(*it2)[3]);
			  double slope = fabs(double((*it2)[1]-(*it2)[3])/((*it2)[0]-(*it2)[2]));
			   // double slope = fabs (((double)(lines[1].y-lines[0].y))/((double)(lines[1].x-lines[0].x)));
			//求直线在坐标系中的斜率
			//double length=sqrt((line[1].y-line[0].y)*(line[1].y-line[0].y)+(line[1].x-line[0].x)*(line[1].x-line[0].x));
			////线段的长度
			//if((slope>0.3)&&(slope<1000)&&(length>50)&&(length<500))
			//{				
			//	line[0].y= line[0].y+ROI_rect_src.y;
			//	line[1].y =line[1].y+ROI_rect_src.y;
			//	cvLine(frame, line[0], line[1], CV_RGB(255,0,0), 3, CV_AA, 0 );
			//}
			if((slope>0.5)&&(slope<2))
			{
			  cv::line( image, pt1, pt2, color,3,8,0);
			}
			  ++it2;	
		  }
	  }

	  // Eliminates lines that do not have an orientation equals to
	  // the ones specified in the input matrix of orientations
	  // At least the given percentage of pixels on the line must 
	  // be within plus or minus delta of the corresponding orientation
	  //std::vector removeLinesOfInconsistentOrientations(
		 // const cv::Mat &orientations, double percentage, double delta) {

			//  std::vector::iterator it= lines.begin();
	
			//  // check all lines
			//  while (it!=lines.end()) {

			//	  // end points
			//	  int x1= (*it)[0];
			//	  int y1= (*it)[1];
			//	  int x2= (*it)[2];
			//	  int y2= (*it)[3];
		 //  
			//	  // line orientation + 90o to get the parallel line
			//	  double ori1= atan2(static_cast(y1-y2),static_cast(x1-x2))+PI/2;
			//	  if (ori1>PI) ori1= ori1-2*PI;

			//	  double ori2= atan2(static_cast(y2-y1),static_cast(x2-x1))+PI/2;
			//	  if (ori2>PI) ori2= ori2-2*PI;
	
			//	  // for all points on the line
			//	  cv::LineIterator lit(orientations,cv::Point(x1,y1),cv::Point(x2,y2));
			//	  int i,count=0;
			//	  for(i = 0, count=0; i < lit.count; i++, ++lit) { 
		
			//		  float ori= *(reinterpret_cast(*lit));

			//		  // is line orientation similar to gradient orientation ?
			//		  if (std::min(fabs(ori-ori1),fabs(ori-ori2))(i);

			//	  // set to zero lines of inconsistent orientation
			//	  if (consistency < percentage) {
 
			//		  (*it)[0]=(*it)[1]=(*it)[2]=(*it)[3]=0;

			//	  }

			//	  ++it;
			//  }

			//  return lines;
	  //}
};


#endif






main.cpp

#include 
#include 
#include 
//#include 
#include 

#include "linefinder.h"
//#include "edgedetector.h"

using namespace cv;
using namespace std;
#define PI 3.1415926

int main()
{
	// Read input image
	Mat image= imread("1.jpg",1);
	if (!image.data)
		return 0; 
	
	//CvRect ROI_rect_src;  //矩形框的偏移和大小 
	//ROI_rect_src.x =0;//方形的最左角的x-坐标
	//ROI_rect_src.y =0;//方形的最上或者最下角的y-坐标
	//ROI_rect_src.width =image.size().width;//宽
	//ROI_rect_src.height =3000;//高
	
	
    // Display the image
	Mat mf1(image.size(),image.type());  
    medianBlur(image,mf1,3); 
//	Mat image;
//	cvtColor(image,image,CV_BGR2GRAY);
	GaussianBlur(image,image,Size(5,5),1.5);
	namedWindow("Original Image");
	imshow("Original Image",image);
	

	Mat img=image(Rect(0.4*image.cols,0.58*image.rows,0.4*image.cols,0.3*image.rows));
	Mat contours;
	Canny(img,contours,80,100);
	
		cv::Mat contoursInv;
	cv::threshold(contours,contoursInv,128,255,cv::THRESH_BINARY_INV);

    // Display the image of contours
	cv::namedWindow("Canny Contours");
	cv::imshow("Canny Contours",contoursInv);


	// Create LineFinder instance
	LineFinder ld;

	// Set probabilistic Hough parameters
	ld.setLineLengthAndGap(80,30);
	ld.setMinVote(30);
	//Mat img=image(Rect(0.2*contours.cols,0.6*contours.rows,0.5*contours.cols,0.25*contours.rows));
	// Detect lines
	vector li= ld.findLines(contours);
	ld.drawDetectedLines(img);
//	ld.removeLinesOfInconsistentOrientations(img,0.4,0.1);
	namedWindow(" HoughP");
	imshow(" HoughP",img);
	namedWindow("Detected Lines with HoughP");
	imshow("Detected Lines with HoughP",image);

	Mat imgGry;
	cvtColor(image,imgGry,CV_BGR2GRAY);
	GaussianBlur(imgGry,imgGry,Size(5,5),1.5);
	vector circles;
	HoughCircles(imgGry, circles, CV_HOUGH_GRADIENT, 
		2,   // accumulator resolution (size of the image / 2) 
		50,  // minimum distance between two circles
		200, // Canny high threshold 
		100, // minimum number of votes 
		25, 50); // min and max radius

	cout << "Circles: " << circles.size() << endl;
	
	// Draw the circles
	//image= imread("chariot.jpg",0);
	vector::const_iterator itc= circles.begin();
	
	while (itc!=circles.end()) {
		
	  circle(image, 
		  Point((*itc)[0], (*itc)[1]), // circle centre
		  (*itc)[2], // circle radius
		  Scalar(255), // color 
		  2); // thickness
		
	  ++itc;	
	}

	namedWindow("Detected Circles");
	imshow("Detected Circles",image);
	waitKey();
	return 0;
}


结果:opencv2实现单张图片的路线路牌检测_计算机视觉大作业2_第1张图片


把左边两条线变为一条:

Mat mf1(image.size(),image.type());  
    medianBlur(image,mf1,3); 
//	Mat image;
//	cvtColor(image,image,CV_BGR2GRAY);
	GaussianBlur(image,image,Size(5,5),1.5);
注释掉就好了。

opencv2实现单张图片的路线路牌检测_计算机视觉大作业2_第2张图片

只是一张图片,具有特殊性,不知道其他图片什么结果。


你可能感兴趣的:(opencv)