表A Numpy数据类型
类型 | 类型代码 | 说明 |
int8、uint8 | i1、u1 | 有符号和无符号8位整型(1字节) |
int16、uint16 | i2、u2 | 有符号和无符号16位整型(2字节) |
int32、uint32 | i4、u4 | 有符号和无符号32位整型(4字节) |
int64、uint64 | i8、u8 | 有符号和无符号64位整型(8字节) |
float16 | f2 | 半精度浮点数 |
float32 | f4、f | 单精度浮点数 |
float64 | f8、d | 双精度浮点数 |
float128 | f16、g | 扩展精度浮点数 |
complex64 | c8 | 分别用两个32位表示的复数 |
complex128 | c16 | 分别用两个64位表示的复数 |
complex256 | c32 | 分别用两个128位表示的复数 |
bool | ? | 布尔型 |
object | O | python对象 |
string | Sn | 固定长度字符串,每个字符1字节,如S10 |
unicode | Un | 固定长度Unicode,字节数由系统决定,如U10 |
表B Numpy常用函数
生成函数 | 作用 |
np.array( x) np.array( x, dtype) |
将输入数据转化为一个ndarray 将输入数据转化为一个类型为type的ndarray |
np.asarray( array ) | 将输入数据转化为一个新的(copy)ndarray |
np.ones( N ) np.ones( N, dtype) np.ones_like( ndarray ) |
生成一个N长度的一维全一ndarray 生成一个N长度类型是dtype的一维全一ndarray 生成一个形状与参数相同的全一ndarray |
np.zeros( N) np.zeros( N, dtype) np.zeros_like(ndarray) |
生成一个N长度的一维全零ndarray 生成一个N长度类型位dtype的一维全零ndarray 类似np.ones_like( ndarray ) |
np.empty( N ) np.empty( N, dtype) np.empty(ndarray) |
生成一个N长度的未初始化一维ndarray 生成一个N长度类型是dtype的未初始化一维ndarray 类似np.ones_like( ndarray ) |
np.eye( N ) np.identity( N ) |
创建一个N * N的单位矩阵(对角线为1,其余为0) |
np.arange( num) np.arange( begin, end) np.arange( begin, end, step) |
生成一个从0到num-1步数为1的一维ndarray 生成一个从begin到end-1步数为1的一维ndarray 生成一个从begin到end-step的步数为step的一维ndarray |
np.mershgrid(ndarray, ndarray,...) |
生成一个ndarray * ndarray * ...的多维ndarray |
np.where(cond, ndarray1, ndarray2) |
根据条件cond,选取ndarray1或者ndarray2,返回一个新的ndarray |
np.in1d(ndarray, [x,y,...]) |
检查ndarray中的元素是否等于[x,y,...]中的一个,返回bool数组 |
矩阵函数 | 说明 |
np.diag( ndarray) np.diag( [x,y,...]) |
以一维数组的形式返回方阵的对角线(或非对角线)元素 将一维数组转化为方阵(非对角线元素为0) |
np.dot(ndarray, ndarray) | 矩阵乘法 |
np.trace( ndarray) | 计算对角线元素的和 |
排序函数 |
说明 |
np.sort( ndarray) |
排序,返回副本 |
np.unique(ndarray) |
返回ndarray中的元素,排除重复元素之后,并进行排序 |
np.intersect1d( ndarray1, ndarray2) np.union1d( ndarray1, ndarray2) np.setdiff1d( ndarray1, ndarray2) np.setxor1d( ndarray1, ndarray2) |
返回二者的交集并排序。 返回二者的并集并排序。 返回二者的差。 返回二者的对称差 |
一元计算函数 | 说明 |
np.abs(ndarray) np.fabs(ndarray) |
计算绝对值 计算绝对值(非复数) |
np.mean(ndarray) |
求平均值 |
np.sqrt(ndarray) |
计算x^0.5 |
np.square(ndarray) |
计算x^2 |
np.exp(ndarray) |
计算e^x |
log、log10、log2、log1p |
计算自然对数、底为10的log、底为2的log、底为(1+x)的log |
np.sign(ndarray) |
计算正负号:1(正)、0(0)、-1(负) |
np.ceil(ndarray) np.floor(ndarray) np.rint(ndarray) |
计算大于等于改值的最小整数 计算小于等于该值的最大整数 四舍五入到最近的整数,保留dtype |
np.modf(ndarray) |
将数组的小数和整数部分以两个独立的数组方式返回 |
np.isnan(ndarray) |
返回一个判断是否是NaN的bool型数组 |
np.isfinite(ndarray) np.isinf(ndarray) |
返回一个判断是否是有穷(非inf,非NaN)的bool型数组 返回一个判断是否是无穷的bool型数组 |
cos、cosh、sin、sinh、tan、tanh |
普通型和双曲型三角函数 |
arccos、arccosh、arcsin、arcsinh、arctan、arctanh |
反三角函数和双曲型反三角函数 |
np.logical_not(ndarray) |
计算各元素not x的真值,相当于-ndarray |
多元计算函数 |
说明 |
np.add(ndarray, ndarray) np.subtract(ndarray, ndarray) np.multiply(ndarray, ndarray) np.divide(ndarray, ndarray) np.floor_divide(ndarray, ndarray) np.power(ndarray, ndarray) np.mod(ndarray, ndarray) |
相加 相减 乘法 除法 圆整除法(丢弃余数) 次方 求模 |
np.maximum(ndarray, ndarray) np.fmax(ndarray, ndarray) np.minimun(ndarray, ndarray) np.fmin(ndarray, ndarray) |
求最大值 求最大值(忽略NaN) 求最小值 求最小值(忽略NaN) |
np.copysign(ndarray, ndarray) |
将参数2中的符号赋予参数1 |
np.greater(ndarray, ndarray) np.greater_equal(ndarray, ndarray) np.less(ndarray, ndarray) np.less_equal(ndarray, ndarray) np.equal(ndarray, ndarray) np.not_equal(ndarray, ndarray) |
> >= < <= == != |
logical_and(ndarray, ndarray) logical_or(ndarray, ndarray) logical_xor(ndarray, ndarray) |
& | ^ |
np.dot( ndarray, ndarray) | 计算两个ndarray的矩阵内积 |
np.ix_([x,y,m,n],...) | 生成一个索引器,用于Fancy indexing(花式索引) |
文件读写 | 说明 |
np.save(string, ndarray) | 将ndarray保存到文件名为 [string].npy 的文件中(无压缩) |
np.savez(string, ndarray1, ndarray2, ...) | 将所有的ndarray压缩保存到文件名为[string].npy的文件中 |
np.savetxt(sring, ndarray, fmt, newline='\n') | 将ndarray写入文件,格式为fmt |
np.load(string) | 读取文件名string的文件内容并转化为ndarray对象(或字典对象) |
np.loadtxt(string, delimiter) | 读取文件名string的文件内容,以delimiter为分隔符转化为ndarray |
表B.1 Numpy.ndarray函数和属性
ndarray.ndim | 获取ndarray的维数 |
ndarray.shape | 获取ndarray各个维度的长度 |
ndarray.dtype | 获取ndarray中元素的数据类型 |
ndarray.T | 简单转置矩阵ndarray |
函数 | 说明 |
ndarray.astype(dtype) | 转换类型,若转换失败则会出现TypeError |
ndarray.copy() | 复制一份ndarray(新的内存空间) |
ndarray.reshape((N,M,...)) | 将ndarray转化为N*M*...的多维ndarray(非copy) |
ndarray.transpose((xIndex,yIndex,...)) | 根据维索引xIndex,yIndex...进行矩阵转置,依赖于shape,不能用于一维矩阵(非copy) |
ndarray.swapaxes(xIndex,yIndex) | 交换维度(非copy) |
计算函数 | 说明 |
ndarray.mean( axis=0 ) | 求平均值 |
ndarray.sum( axis= 0) | 求和 |
ndarray.cumsum( axis=0) ndarray.cumprod( axis=0) |
累加 累乘 |
ndarray.std() ndarray.var() |
方差 标准差 |
ndarray.max() ndarray.min() |
最大值 最小值 |
ndarray.argmax() ndarray.argmin() |
最大值索引 最小值索引 |
ndarray.any() ndarray.all() |
是否至少有一个True 是否全部为True |
ndarray.dot( ndarray) |
计算矩阵内积 |
排序函数 |
说明 |
ndarray.sort(axis=0) |
排序,返回源数据 |
表B.3 ndarray索引/切片方式
ndarray[n] | 选取第n+1个元素 |
ndarray[n:m] | 选取第n+1到第m个元素 |
ndarray[:] | 选取全部元素 |
ndarray[n:] | 选取第n+1到最后一个元素 |
ndarray[:n] | 选取第0到第n个元素 |
ndarray[ bool_ndarray ] 注:bool_ndarray表示bool类型的ndarray |
选取为true的元素 |
ndarray[[x,y,m,n]]... |
选取顺序和序列为x、y、m、n的ndarray |
ndarray[n,m] ndarray[n][m] |
选取第n+1行第m+1个元素 |
ndarray[n,m,...] ndarray[n][m].... |
选取n行n列....的元素 |
表C Numpy.random常用函数
函数 | 说明 |
seed() seed(int) seed(ndarray) |
确定随机数生成种子 |
permutation(int) permutation(ndarray) |
返回一个一维从0~9的序列的随机排列 返回一个序列的随机排列 |
shuffle(ndarray) | 对一个序列就地随机排列 |
rand(int) randint(begin,end,num=1) |
产生int个均匀分布的样本值 从给定的begin和end随机选取num个整数 |
randn(N, M, ...) | 生成一个N*M*...的正态分布(平均值为0,标准差为1)的ndarray |
normal(size=(N,M,...)) | 生成一个N*M*...的正态(高斯)分布的ndarray |
beta(ndarray1,ndarray2) | 产生beta分布的样本值,参数必须大于0 |
chisquare() | 产生卡方分布的样本值 |
gamma() | 产生gamma分布的样本值 |
uniform() | 产生在[0,1)中均匀分布的样本值 |
表D.1 linalg常用函数
函数 | 说明 |
det(ndarray) | 计算矩阵列式 |
eig(ndarray) | 计算方阵的本征值和本征向量 |
inv(ndarray) pinv(ndarray) |
计算方阵的逆 计算方阵的Moore-Penrose伪逆 |
qr(ndarray) | 计算qr分解 |
svd(ndarray) | 计算奇异值分解svd |
solve(ndarray) | 解线性方程组Ax = b,其中A为方阵 |
lstsq(ndarray) | 计算Ax=b的最小二乘解 |
附加:Numpy linalg模块,包含线性代数的函数。使用这个模块,可计算逆矩阵、求特征值、解线性方程组及求解行列式等。
1.计算逆矩阵
import numpy as np
# 创建矩阵
A = np.mat('0 1 2;1 0 3;4 -3 8')
print(A)
[[ 0 1 2]
[ 1 0 3]
[ 4 -3 8]]
# 使用inv函数计算逆矩阵
inv = np.linalg.inv(A)
print(inv)
[[-4.5 7. -1.5]
[-2. 4. -1. ]
[ 1.5 -2. 0.5]]
# 检查原矩阵和求得的逆矩阵相乘的结果为单位矩阵
print(A*inv)
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
# 注:矩阵必须是方阵且可逆,否则会抛出LinAlgError异常。
2.解线性方程组
# numpy.linalg中的函数solve可以求解形如 Ax = b 的线性方程组,其中 A 为矩阵,b 为一维或二维的数组,x 是未知变量
# 创建矩阵和数组
B = np.mat('1 -2 1;0 2 -8;-4 5 9')
print(B)
[[ 1 -2 1]
[ 0 2 -8]
[-4 5 9]]
b = np.array([0,8,9])
print(b)
[0 8 9]
# 调用solve函数求解线性方程
x = np.linalg.solve(B,b)
print(x)
[155. 88. 21.]
# 使用dot函数检查求得的解是否正确
print(np.dot(B,x))
[[0. 8. 9.]]
3.特征值和特征向量
# 特征值(eigenvalue)即方程 Ax = ax 的根,是一个标量。其中,A 是一个二维矩阵,x 是一个一维向量。特征向量(eigenvector)是关于特征值的向量
# numpy.linalg模块中,eigvals函数可以计算矩阵的特征值,而eig函数可以返回一个包含特征值和对应的特征向量的元组
# 创建一个矩阵
C = np.mat("3 -2;1 0")
# 使用一个eigvals函数求解特征值
c0 = np.linalg.eigvals(C)
print(c0)
[2. 1.]
"""
使用eig函数求解特征值和特征向量,该函数将返回一个元组,
按列排放着特征值和对应的特征向量,其中第一列为特征值,第二列为特征向量
"""
c1,c2 = np.linalg.eig(C)
print(c1)
[2. 1.]
print(c2)
[[0.89442719 0.70710678]
[0.4472136 0.70710678]]
# 使用dot函数验证求得的解是否正确
for i in range(len(c1)):
print('left:',np.dot(C,c2[:,i]))
print('right:',c1[i]*c2[:,i])
left: [[1.78885438]
[0.89442719]]
right: [[1.78885438]
[0.89442719]]
left: [[0.70710678]
[0.70710678]]
right: [[0.70710678]
[0.70710678]]
4.奇异值分解
# SVD(Singular Value Decomposition,奇异值分解)是一种因子分解运算,将一个矩阵分解为3个矩阵的乘积
# numpy.linalg模块中的svd函数可以对矩阵进行奇异值分解。该函数返回3个矩阵——U、Sigma和V,其中U和V是正交矩阵,Sigma包含输入矩阵的奇异值。
D = np.mat("4 11 14;8 7 -2")
"""
使用svd函数分解矩阵
结果包含等式中左右两端的两个正交矩阵U和V,以及中间的奇异值矩阵Sigma
"""
U,Sigma,V = np.linalg.svd(D,full_matrices=False)
print ("U:",U)
U: [[-0.9486833 -0.31622777]
[-0.31622777 0.9486833 ]]
print ("Sigma:",Sigma)
Sigma: [18.97366596 9.48683298]
print ("V",V)
V [[-0.33333333 -0.66666667 -0.66666667]
[ 0.66666667 0.33333333 -0.66666667]]
# 使用diag函数生成完整的奇异值矩阵。将分解出的3个矩阵相乘
print (U * np.diag(Sigma) * V)
[[ 4. 11. 14.]
[ 8. 7. -2.]]
5.广义逆矩阵
# 使用numpy.linalg模块中的pinv函数进行求解,
# 注:inv函数只接受方阵作为输入矩阵,而pinv函数则没有这个限制
E = np.mat("4 11 14;8 7 -2")
pseudoinv = np.linalg.pinv(E)
print (pseudoinv)
[[-0.00555556 0.07222222]
[ 0.02222222 0.04444444]
[ 0.05555556 -0.05555556]]
6.行列式
# numpy.linalg模块中的det函数可以计算矩阵的行列式
F = np.mat("3 4;5 6")
# 使用det函数计算行列式
print (np.linalg.det(F))
-1.9999999999999971
参考自http://www.cnblogs.com/WSX1994/articles/9061516.html
注:array、asarray、arange三者的区别
# 生成数组,1维到n维...
>>> np.array([1,2,3])
array([1, 2, 3])
>>> A=np.array([1,2,3])
>>> print(A)
[1 2 3]
# 3维
>>> D = np.array([[[1,2,3],[3,2,1]],[[1,2,3],[4,4,4]]])
>>> print(D)
[[[1 2 3]
[3 2 1]]
[[1 2 3]
[4 4 4]]]
>>> print(D.shape)
(2, 2, 3)
>>> print(D.ndim)
3
# 数组的copy
>>> B = np.asarray(A)
>>> print(B)
[1 2 3]
# 生成一个一维数组
>>> C = np.arange(0,4,1)
>>> print(C)
[0 1 2 3]
>>> print(np.asarray(C))
[0 1 2 3]
>>> print(np.asarray([[1,2,3],[1,2,3]]))
[[1 2 3]
[1 2 3]]
numpy.where(condition[, x, y])
基于条件condition,返回值来自x或者y.
如果.
参数: | condition : 数组,bool值
x, y : array_like, 可选
|
---|---|
返回值: | out : ndarray or tuple of ndarrays
|