- cs231n_深度之眼第二次作业
Jie_Cheney
图像分类数据和label分别是什么?图像分类存在的问题与挑战?图像分类数据包括训练集测试集的数据,在有监督的问题中对于训练集数据来说是有label的,而测试集是等待我们去识别它的类别,不具有label。label就是分类标签,比如cifar10这个数据集,待分类的这10类数据我们可以写成1-10,或者0-9这就叫做label。图像分类存在的问题与挑战:光照,角度,形变,遮挡。使用python加载一
- 向量,矩阵和张量的导数 | 简单的数学
橘子学AI
前段时间看过一些矩阵求导的教程,在看过的资料中,尤其喜欢斯坦福大学CS231n卷积神经网络课程中提到的Erik这篇文章。循着他的思路,可以逐步将复杂的求导过程简化、再简化,直到发现其中有规律的部分。话不多说,一起来看看吧。作者:ErikLearned-Miller翻译:橘子来源:橘子AI笔记(datawitch)本文旨在帮助您学习向量、矩阵和高阶张量(三维或三维以上的数组)的求导方法,以及如何求对
- cs231n assignment1——SVM
柠檬山楂荷叶茶
cs231n支持向量机python机器学习
整体思路加载CIFAR-10数据集并展示部分数据数据图像归一化,减去均值(也可以再除以方差)svm_loss_naive和svm_loss_vectorized计算hinge损失,用拉格朗日法列hinge损失函数利用随机梯度下降法优化SVM在训练集和验证集计算准确率,保存最好的模型在测试集进行预测计算准确率加载展示划分数据集加载CIFAR-10数据集#LoadtherawCIFAR-10data.
- (2023版)斯坦福CS231n学习笔记:DL与CV教程 (12) | 视觉模型可视化与可解释性(Visualizing and Understanding)
女王の专属领地
计算机视觉#计算机视觉#学习笔记
前言笔记专栏:斯坦福CS231N:面向视觉识别的卷积神经网络(23)课程链接:https://www.bilibili.com/video/BV1xV411R7i5CS231n:深度学习计算机视觉(2017)中文笔记:https://zhuxiaoxia.blog.csdn.net/article/details/801551662023最新课程PPT:https://download.csdn.
- 2019-02-25~~2019-03-03 第十周周末复盘
仰望星空的小狗
一、任务清单1、刷leetcode题目(7道)2、听tensorflow,cs231n和cv课程3、技术文档输出4、恢复早起的作息二、反思1、自从年前工作非常忙,加上遇上一些郁闷的事情,导致年前到现在时间记录中断了很长一段时间。本周开始恢复时间记录,日打卡,周复盘。2、生活中不论谁,肯定会时不时遇上一些令人郁闷的事情,这些郁闷的事情很可能会打乱原本的生活节奏。但是,生活还有很长的路要走,不应该因为
- 训练神经网络(上)激活函数
笔写落去
深度学习神经网络人工智能深度学习
本文介绍几种激活函数,只作为个人笔记.观看视频为cs231n文章目录前言一、Sigmoid函数二、tanh函数三、ReLU函数四、LeakyReLU函数五、ELU函数六.在实际应用中寻找激活函数的做法总结前言激活函数是用来加入非线性因素的,提高神经网络对模型的表达能力,解决线性模型所不能解决的问题。一、Sigmoid函数这个函数大家应该熟悉在逻辑回归中曾用到这个sigmoid函数这个函数可以将负无
- 卷积神经网络
weixin_34283445
人工智能
https://zhuanlan.zhihu.com/p/27642620关于卷积神经网络的讲解,网上有很多精彩文章,且恐怕难以找到比斯坦福的CS231n还要全面的教程。所以这里对卷积神经网络的讲解主要是以不同的思考侧重展开,通过对卷积神经网络的分析,进一步理解神经网络变体中“因素共享”这一概念。注意:该文会跟其他的现有文章有很大的不同。读该文需要有本书前些章节作为预备知识,不然会有理解障碍。没看
- CS231n 作业答案
tech0ne
CS231n三次大作业:#第一次作业##原始包下载:作业一完成包地址:作业一JupyterNotebook结果:KNNSVMSoftmaxTwolayernetFeatures第二次作业原始包下载:作业二完成包地址:作业二JupyterNotebook结果:FullyConnectedNetsBatchNormalizationDropoutConvolutionalNetworksTensorf
- cs231n作业-assignment1
momentum_
AIpython机器学习numpy
assignment1(cs231n)文章目录assignment1(cs231n)KNN基础计算distances方法一:双层循环计算distances方法二:单层循环计算distances方法三:无循环根据dists找到每个测试样本的种类KNN模型汇总交叉验证KNN基础计算distances方法一:双层循环dists矩阵是(num_test,num_train)500*5000defcompu
- 【深度学习理论】(1) 损失函数
立Sir
深度学习理论机器学习人工智能神经网络深度学习损失函数
各位同学好,最近学习了CS231N斯坦福计算机视觉公开课,讲的太精彩了,和大家分享一下。已知一张图像属于各个类别的分数,我们希望图像属于正确分类的分数是最大的,那如何定量的去衡量呢,那就是损失函数的作用了。通过比较分数与真实标签的差距,构造损失函数,就可以定量的衡量模型的分类效果,进而进行后续的模型优化和评估。构造损失函数之后,我们的目标就是将损失函数的值最小化,使用梯度下降的方法求得损失函数对于
- 线性分类器--数据处理
骆驼穿针眼
计算机视觉与深度学习深度学习
数据集划分通常按照70%,20%,10%来分数据集数据处理斯坦福的线性分类器体验http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
- 【CS231n】-学习笔记-1-Intro to Computer Vision, historical context.
Alice熹爱学习
计算机视觉计算机视觉CS231nDeepLearningPYTHON
Class:http://cs231n.stanford.eduSchedule:http://cs231n.stanford.edu/syllabus.htmlSlides:http://vision.stanford.edu/teaching/cs231n/slides/winter1516_lecture1.pdfVideo:https://www.youtube.com/watch?v=N
- 笔记00-杜克大学公开课,图像和视频处理:从火星到好莱坞
木木爱吃糖醋鱼
笔记内容介绍》ImageandVideoProcessing:FromMarstoHollywoodwithaStopattheHospital算起来是2017年中的时候,因为要搞深度学习的东西,就自学了斯坦福cs231n的神经网络的课。Youtube上有至少两期的公开课视频。好像从李飞飞离职之后,截止到2017年春季,就没再继续了。现在想想哪门课的内容挺多挺繁杂的。虽然是本科的课,最后好像每个学
- 向量对向量求导,链式法则
构建的乐趣
向量对向量求导
这还算不得向量微积分里多么主干的内容,只是一个小技术,但是数学推导很多时候就会用到。http://cs231n.stanford.edu/vecDerivs.pdf这个文献是一个好文献。另优秀翻译:https://zhuanlan.zhihu.com/p/142668996链式法则注意:这里的乘法变成了innerproduct推导过程中比较关键的点:除了利用这文献所讲的分量慢慢推,还有一个要点,首
- Win10上关于cs231n(2017)课后作业的环境配置
Diane小山
开始首先,这篇文章是针对那些想完成cs231n作业,但是觉得装linux双系统很麻烦的童鞋。cs231n作业的SetUp官方教程只针对了那些使用Unix(Ubuntu,Macos等)的人,对使用Windows的人十分不友好。安装anaconda百度一篇anaconda的安装教程,照着安装即可。这里需要提醒的有两点:国内的anaconda镜像能用的基本都挂了,所以还是老老实实去官方网站下载吧:)一定
- CS231N assignment2 SVM
weixin_30363509
数据结构与算法人工智能python
CS231NAssignment2SupportVectorMachineBegin本文主要介绍CS231N系列课程的第一项作业,写一个SVM无监督学习训练模型。课程主页:网易云课堂CS231N系列课程语言:Python3.61线形分类器以图像为例,一幅图像像素为32*32*3代表长32宽32有3通道的衣服图像,将其变为1*3072的一个向量,即该图像的特征向量。我们如果需要训练1000幅图像,那
- 【AI】斯坦福CS231n课程练习(1)—— KNN和SVM分类
李清焰
CS231nKNNSVM
文章目录一、前言1、CS231n是啥?2、本篇博客任务3、使用的数据集二、知识准备1、KNN是什么?2、SVM是什么?SVM的组成:三、实验——KNN和SVM分类1、KNN图片分类(重要步骤将在目录上体现)(1)在colab上切换目录,加载dataset(2)加载包、设置和外部模块(3)加载、初步处理数据(4)可视化打印一些图片看看我们的数据集长什么样(5)对测试、训练数据进行分组(6)创建KNN
- 深度学习系列之cs231n assignment1 KNN(二)
明曦君
深度学习python机器学习
写在前面:久经周折,终于能够将KNN系列给大家继续分享了,这次的内容来源于李飞飞教授团队的cs231n深度学习课程的作业1中的KNN研究,我会在全文我遇到困难的地方进行分享,以及一些想法。内容安排深度学习系列依托与cs231n的课程作业,因为只想练习编程,所以不对课程内容进行分享,仅针对编程内容进行分享。那么这一次的分享就是assignment1中K近邻分类器的使用,以及完成其中的四个问题,这四个
- cs231n assignment2(3)
没天赋的学琴
assignment2的第三部分,是熟悉深度学习框架pytorch或者tensorflow,这里选择的是使用pytorch框架。该部分主要通过三个层次:Barebones、ModuleAPI、SequentialAPI,来了解pytorch。Barebones在该层次中,需要利用pytorch所提供的一些函数,不仅需要定义神经网络的结构,同时还需编写网络的前向传播以及模型的训练部分;而参数的梯度可
- 第三十三周学习笔记
luputo
学习笔记
第三十三周学习笔记CS231nDeepLearningSoftwareCPUvsGPUCPU:Fewercores,buteachcoreismuchfasterandmuchmorecapable;greatatsequentialtasksGPU:Morecores,buteachcoreismuchslowerand“dumber”;greatforparalleltasks(matrixm
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM
weixin_34174132
人工智能
http://cs231n.github.io/neural-networks-1https://arxiv.org/pdf/1603.07285.pdfhttps://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/Appli
- CNN笔记:通俗理解卷积神经网络
I_O_fly
神经网络cnn神经网络深度学习
通俗理解卷积神经网络(cs231n与5月dl班课程笔记)1前言2012年我在北京组织过8期machinelearning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”。本博客内写过一些机器学习相关的文章,但上一篇技术文章“LDA主题模型”还是写于2014年11月份,毕竟自2015年开始创业做在线教育后,太
- Knn算法与 Svm算法对比
一个不知名的码农
支持向量机算法机器学习
Knn算法与Svm算法对比这里首先借用一个博主所做的图表,讲的很有理有据(7条消息)[cs231n]KNN与SVM区别_Rookie’Program的博客-CSDN博客_knn和svm的区别这里我们来讲一下我对这两个算法的理解knn看起来就是比较简单的一个数学模型,就是划范围论,精细程度实际上可能没有svm好,并且测试量也不能大,数据一大,处理起来又很麻烦,预测效率也比较低。相反的svm和knn对
- 斯坦福大学CS520知识图谱系列课程学习笔记:第一讲什么是知识图谱
ngl567
随着知识图谱在人工智能各个领域的广泛使用,知识图谱受到越来越多AI研究人员的关注和学习,已经成为人工智能迈向认知系统的关键技术之一。之前,斯坦福大学的面向计算机视觉的CS231n和面向自然语言处理的CS224n成为了全球非常多AI研究人员的入门经典学习课程。因此,斯坦福大学于今年3月开设了一门专门面向知识图谱的系列课程CS520,官网课程页:https://web.stanford.edu/cla
- 北京邮电大学 计算机视觉与深度学习 鲁鹏 计算机视觉概述课程手迹
qinyaoze
机器学习CV手记计算机视觉人工智能深度学习
课程笔记计算机视觉=输入(认知神经科学-理论,运用方法&算法,硬件)+输出(机器人)课程:图像处理-CS131,图像结构-CS231a,图像理论-CS230/CS231nQ-象棋与人工智能的关系?IBM-深蓝,Google-AlphaGo>>机器赢得象棋胜利=强大的搜索算法目标:语义鸿沟,即建立图像像素核语义间的关系发展过程:系统出现-物种大繁荣>>理论研究-猫视觉神经>>积木世界>>MIT图像处
- 国外AI大牛推荐的10大最有帮助免费在线机器学习课程
机器学习与系统
woman_ml.jpg本文编译自twitter用户chipro斯坦福在线自学课程《概率与统计》:该课程涉及概率统计的基本概念,涵盖机器学习4个基本方面:探索性数据分析,产生数据,概率和推理。MIT的《线性代数》:这是我见过的最好的线性代数课程,由传奇教授GilbertStrang(吉尔伯特斯特朗)教授。斯坦福的CS231N:用于视觉识别的卷积神经网络:平衡理论与实践。课堂笔记写得很好,解释了不同
- CS231n学习笔记--计算机视觉历史回顾与介绍1
听城
CS231n简介首先我们来看看官方对这门课的介绍:计算机视觉在社会中已经逐渐普及,并广泛运用于搜索检索、图像理解、手机应用、地图导航、医疗制药、无人机和无人驾驶汽车等领域。而这些应用的核心技术就是图像分类、图像定位和图像探测等视觉识别任务。近期神经网络(也就是“深度学习”)方法上的进展极大地提升了这些代表当前发展水平的视觉识别系统的性能。本课程将深入讲解深度学习框架的细节问题,聚焦面向视觉识别任务
- 计算机视觉实战项目(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别)
阿利同学
计算机视觉分类目标检测
图像分类教程博客_传送门链接:链接在本教程中,您将学习如何使用迁移学习训练卷积神经网络以进行图像分类。您可以在cs231n上阅读有关迁移学习的更多信息。本文主要目的是教会你如何自己搭建分类模型,耐心看完,相信会有很大收获。废话不多说,直切主题…首先们要知道深度学习大都包含了下面几个方面:1.加载(处理)数据2.网络搭建3.损失函数(模型优化)4模型训练和保存把握好这些主要内容和流程,基本上对分类模
- cs231n assignment2(2)
没天赋的学琴
assignment2的第二部分的内容,实现一个卷积神经网络。这一部分主要是实现卷积神经网络中的一些所需用到的layer类型:卷积层(convolution)和池化层(这里是实现max-pooling)。这部分的实现是不考虑其运行效率,而在真正的实现应用上,卷积神经网络的运行效率是一个很重要的问题。卷积层卷积层是由一个个过滤器(filter),每个过滤器的尺寸为:,这里的的大小与输入的图像或act
- cs231n作业:Assignment1-Softmax
Diane小山
softmax.pydefsoftmax_loss_naive(W,X,y,reg):"""Softmaxlossfunction,naiveimplementation(withloops)InputshavedimensionD,thereareCclasses,andweoperateonminibatchesofNexamples.Inputs:-W:Anumpyarrayofshape(
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23