- ACL 2024 | 美团技术团队精选论文解读
美团算法人工智能
本文精选了美团技术团队被ACL2024收录的4篇论文进行解读,论文内容覆盖了训练成本优化、投机解码、代码生成优化、指令微调(IFT)等技术领域。这些论文是美团技术团队跟高校、科研机构合作的成果。希望能给从事相关研究工作的同学带来一些帮助或启发。ACL是计算语言学和自然语言处理领域最重要的顶级国际会议,由国际计算语言学协会组织,每年举办一次。据谷歌学术计算语言学刊物指标显示,ACL影响力位列第一,是
- KDD 2024 | 美团技术团队精选论文解读 & 论文分享会预告
美团机器学习深度学习
ACMSIGKDD(KnowledgeDiscoveryandDataMining,简称KDD)是数据挖掘领域的国际顶级会议。KDDCup比赛是由SIGKDD主办的数据挖掘研究领域的国际顶级赛事,从1997年开始,每年举办一次,是目前数据挖掘领域最有影响力的赛事。本文精选了美团技术团队被KDD2024收录的5篇长文进行解读,覆盖了用户意图感知、机器学习&运筹优化、在线控制实验、联合广告模型、实时调
- VLM 系列——Qwen2 VL——论文解读——前瞻(源码解读)
TigerZ*
AIGC算法AIGC人工智能transformer计算机视觉图像处理
一、概述1、是什么是一系列多模态大型语言模型(MLLM),其中包括2B、7B、72B三个版本,整体采用视觉编码器+LLM形式(可以认为没有任何投射层)。比较创新的是图像缩放方式+3DLLM位置编码+(预估后面的训练方式也不太一样)。能够处理包括文本、图像在内的多种数据类型,具备图片描述、单图文问答、多图问对话、视频理解对话、json格式、多语言、agent、高清图理解(代码编写和debug论文暂时
- 【笔记】扩散模型(七):Latent Diffusion Models(Stable Diffusion)论文解读与代码实现
LittleNyima
DiffusionModels笔记stablediffusionAIGC人工智能
论文链接:High-ResolutionImageSynthesiswithLatentDiffusionModels官方实现:CompVis/latent-diffusion、CompVis/stable-diffusion这一篇文章的内容是LatentDiffusionModels(LDM),也就是大名鼎鼎的StableDiffusion。先前的扩散模型一直面临的比较大的问题是采样空间太大,学
- 《深入浅出多模态》(九)多模态经典模型:MiniGPT-v2、MiniGPT5
GoAI
深入浅出多模态深入浅出AI多模态vllmLLM大模型stablediffusion
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- 人脸识别算法MTCNN论文解读
纸上得来终觉浅~
图像处理paper阅读人脸识别mtcnn
论文名称:JointFaceDetectionandAlignmentusingMulti-taskCascadedConvolutionalNetworks论文地址:https://www.lao-wang.com/wp-content/uploads/2017/07/1604.02878.pdf1、MTCNN原理MTCNN,Multi-taskconvolutionalneuralnetwor
- NL2SQL进阶系列(5):论文解读业界前沿方案(DIN-SQL、C3-SQL、DAIL-SQL、SQL-PaLM)、新一代数据集BIRD-SQL解读
汀、人工智能
LLM工业级落地实践copilot人工智能NL2SQLLLM自然语言处理NL2DSLText2SQL
NL2SQL进阶系列(5):论文解读业界前沿方案(DIN-SQL、C3-SQL、DAIL-SQL)、新一代数据集BIRD-SQL解读NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(SpidervsBIRD)全面对比优劣分析[Text2SQL、Text2DSL]NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理NL2SQ
- 图形学论文笔记
Jozky86
图形学图形学笔记
文章目录PBD:XPBD:shapematchingPBD:【深入浅出NvidiaFleX】(1)PositionBasedDynamics最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码XPBD:基于XPBD的物理模拟一条龙:公式推导+代码+文字讲解(纯自制)【论文精读】XPBD基于位置的动力学XPBD论文解读(
- 【论文解读】Macroblock Level Rate Control for Low Delay H.264/AVC based Video Communication
Codec Conductor
论文解读#x264h.264x264音视频码率控制视频编解码AVC
级别:IEEE时间:2015作者:MinGao等机构:哈尔滨工业大学下载:MacroblockLevelRateControlforLowDelayH.264/AVCbasedVideoCommunication摘要算法目的:提出了一种针对低延迟H.264/AVC视频通信的宏块(MB)级别速率控制算法。算法基础:基于ρ域速率模型,该模型涉及量化后零变换系数的百分比(ρ)。关键技术:使用指数模型来描
- 论文解读:从Dijkstra的On-the-Fly到Go的三色标记算法,并行垃圾回收的起源
liuwill
计算机科学算法后端论文阅读
我们经常听到关于垃圾回收的说法是,某种垃圾回收算法是一种特定语言特有的,容易理解成,垃圾回收的算法跟特定编程语言是绑定的,但是仔细想想,垃圾回收器是一种分配和管理内存的机制或者程序,内存管理跟语言本身是没有必然联系的,只是语言运行时实现时的一种策略选择。更严格来说的,其实不仅仅是垃圾回收策略,一些语言的语法特性,也不是某种语言专属,语言的实现者完全可以通过组合,自己选择自己偏好的策略,发明更多的语
- 机器人建图算法2.1从栅格占据地图到ESDF地图
RuiH.AI
机器人建图算法学习算法
机器人建图算法2.1从栅格占据地图到ESDF地图前言论文解读示意图说明伪代码说明算法流程总结前言最基础的地图是占据栅格地图Occupancymap,每个格子标明了该位置是否被物体占据。然而对于规划和避障而言,地图中的占据信息是不够的,还需要障碍距离、方向等信息。TSDF和ESDF地图弥补了这个缺陷。IROS2010:ImprovedupdatingofEuclideandistancemapsan
- 知识图谱最新权威综述论文解读:实体发现
ngl567
上期我们介绍了2020年知识图谱最新权威综述论文《ASurveyonKnowledgeGraphs:Representation,AcquisitionandApplications》的知识图谱补全部分,本期我们将一起学习这篇论文的实体发现部分。论文地址:https://arxiv.org/pdf/2002.00388.pdfarxiv.org1实体发现本节将基于实体的知识获取区分为若干细分任务,
- 这个论文解读 agent 比GPT-4 还要牛!强烈推荐!
夕小瑶
人工智能自然语言处理transformerchatgpt深度学习神经网络
已经2024年了,该出现一个论文解读AIAgent了。但是目前市面上哪怕最强的GPT-4来做论文解读也是不行,所以我们顺手做了这样一个agent,因为——我们公司的算法同学也需要刷论文啊喂=,=而且我们也经常人工写论文解读嘛,所以干脆就顺手做一个得了,不求赚钱,但求有点用。真正尝试过用gpt去刷论文、写论文解读的小伙伴,一定深有体验——费劲。其他agents也没有能搞定的,所以我们就索性做了个,传
- 《生产调度优化》专栏导读
Lins号丹
生产调度优化生产调度优化
文章分类生产调度优化问题入门相关问题求解调度问题求解效率探讨相关论文解读生产调度优化问题入门文章包含重点简述生产车间调度优化问题两种常用的FJSP模型解析FJSP问题的标准测试数据集的Python代码解析FJSP标准测试数据代码相关问题求解文章求解器问题类型【作业车间调度JSP】通过python调用PuLP线性规划库求解PuLP(开源)作业车间调度JSP【作业车间调度JSP】通过PuLP调用COP
- 【ChatIE】论文解读:Zero-Shot Information Extraction via Chatting with ChatGPT
Bigcrab__
神经网络Tensorflowchatgpt人工智能深度学习
文章目录介绍ChatIEEntity-RelationTripleExtration(RE)NamedEntityRecognition(NER)EventExtraction(EE)实验结果结论论文:Zero-ShotInformationExtractionviaChattingwithChatGPT作者:XiangWei,XingyuCui,NingCheng,XiaobinWang,Xin
- FaE:基于符号知识的适应性和可解释的神经记忆
NLP论文解读
©原创作者|朱林论文解读:FactsasExperts:AdaptableandInterpretableNeuralMemoryoverSymbolicKnowledge论文作者:GoogleResearch论文地址:https://arxiv.org/abs/2007.00849收录会议:NAACL202101介绍大规模语言模型,如BERT、Transformer等是现代自然语言建模的核心,其
- 论文解读:知识图谱融入预训练模型
NLP论文解读
深度学习机器学习人工智能自然语言处理知识图谱
©NLP论文解读原创•作者|疯狂的Max背景及动机以BERT为基础的预训练模型在各项NLP任务获得巨大的成功,与此同时,如何在泛化的预训练模型基础上融入某些特定领域的知识图谱以获得在特定领域内让模型有更优秀的表现,这一课题也一直备受关注。然而大部分之前的将知识图谱融入预训练模型的工作都是将知识图谱的知识转化为知识导向的训练任务,通过更新整个模型的参数来进行训练,来实现知识图谱的融入。这种方法虽然可
- 知识增广的预训练语言模型K-BERT:将知识图谱作为训练语料
NLP论文解读
知识图谱语言模型bert
©原创作者|杨健论文标题:K-BERT:EnablingLanguageRepresentationwithKnowledgeGraph收录会议:AAAI论文链接:https://ojs.aaai.org/index.php/AAAI/article/view/5681项目地址:https://github.com/autoliuweijie/K-BERT01背景论述笔者在前面的论文解读中提到过E
- HybridA* 论文解读
Big David
自动驾驶规划系列论文阅读笔记HybridA*论文阅读混合Astar
本文旨在对原论文进行翻译,对混合A*有一个大概的理解论文题目:PracticalSearchTechniquesinPathPlanningforAutonomousDriving1摘要本文描述了一个实用的路径规划算法,无人驾驶汽车在未知的环境中,障碍物通过机器人的传感器实时检测产生平滑的路径。这项工作的动机和实验验证了在2007年DARPA城市挑战赛,机器人必须在停车场自主导航。本文的方法有两个
- 论文解读《Zero-Shot Category-Level Object Pose Estimation》类别级6D位姿估计
ZYLer_
6D位姿估计人工智能计算机视觉
论文:《Zero-ShotCategory-LevelObjectPoseEstimation》该文整体感觉不难,处理流程比较新颖,可以重点参考。Code:https://github.com/applied-ai-lab/zero-shot-pose(48star)摘要:解决问题:实例级姿态估计的问题。=>**零样本(也就是预测未见过的物体(没有该实例的数据标记和CAD模型),类别级)**预测来
- 论文解读《Gen6D: Generalizable Model-Free 6-DoF Object Pose Estimation from RGB Images》 小样本6D位姿估计
ZYLer_
6D位姿估计机器学习人工智能计算机视觉3d深度学习
论文:《Gen6D:GeneralizableModel-Free6-DoFObjectPoseEstimationfromRGBImages》Code:https://github.com/liuyuan-pal/gen6d(469star)摘要:现有的可推广姿态估计器要么需要高质量的对象模型,要么在测试时需要额外的深度图或对象掩码,这大大限制了其应用范围。为了满足实际应用中的需求,我们认为姿态
- 论文解读《EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose 》
ZYLer_
6D位姿估计计算机视觉人工智能3d
论文:《EPro-PnP:GeneralizedEnd-to-EndProbabilisticPerspective-n-PointsforMonocularObjectPoseEstimation》Code:https://github.com/tjiiv-cprg/epro-pnp(909star)作者的视频简单介绍:https://www.bilibili.com/video/BV13T41
- VLM 系列——Llava1.6——论文解读
TigerZ*
AIGC算法人工智能AIGC深度学习计算机视觉
一、概述1、是什么Llava1.6是llava1.5的升级暂时还没有论文等,是一个多模态视觉-文本大语言模型,可以完成:图像描述、视觉问答、根据图片写代码(HTML、JS、CSS),潜在可以完成单个目标的视觉定位、名画名人等识别(问答、描述)。支持单幅图片输入(可以作为第一个或第二个输入),多轮文本对话。本文基于CLIP的视觉编码器,以及多个版本语言解码器,使用最简单的两层FC构成MLP映射视觉特
- VLM (MLLM)系列——论文解读总结
TigerZ*
AIGC算法深度学习人工智能计算机视觉AIGC图像处理算法
建议以下几篇都看一下吧,因为这几篇相对出发点都有新意,并且也都在同期的思南评测中有排名。CLIP*数据:用了4亿的互联网自有图文对数据。*模型:由一个视觉编码器、一个文本编码器*训练:一阶段预训练,在32768的batchsize下做的对比学习。中文CLIP*数据:由LAION5B等构成一个2亿的图文对数据。*模型:整体和CLIP类似,由一个视觉编码器、一个文本编码器。*训练:两阶段预训练,权重来
- VLM 系列——MoE-LLaVa——论文解读
TigerZ*
AIGC算法深度学习人工智能AIGC计算机视觉transformer
一、概述1、是什么moe-Llava是Llava1.5的改进全称《MoE-LLaVA:MixtureofExpertsforLargeVision-LanguageModels》,是一个多模态视觉-文本大语言模型,可以完成:图像描述、视觉问答,潜在可以完成单个目标的视觉定位、名画名人等识别(问答、描述),未知是否能偶根据图片写代码(HTML、JS、CSS)。支持单幅图片输入(可以作为第一个或第二个
- VLM 系列——LLaVA-MoLE——论文解读
TigerZ*
AIGC算法深度学习人工智能AIGCtransformer计算机视觉
一、概述1、是什么Llava-MoLE是Llava1.5的改进全称《LLaVA-MoLE:SparseMixtureofLoRAExpertsforMitigatingDataConflictsinInstructionFinetuningMLLMs》,是一个多模态视觉-文本大语言模型,可以完成:图像描述、视觉问答,潜在可以完成单个目标的视觉定位、名画名人等识别(问答、描述),未知是否能偶根据图片
- 【论文解读】Document-Level Relation Extraction with Adaptive Focal Loss and Knowledge Distillation
Queen_sy
深度学习人工智能
目录1Introduction1Docre任务比句子级任务更具挑战性:2现有的Docre方法:3现有的Docre方法存在三个局限性2Methodology1使用轴向注意力模块作为特征提取器:2第二,提出适应性焦距损失3第三用知识蒸馏相关知识类别不平衡问题长尾类分布交叉熵损失和二元交叉熵损失二元交叉熵损失定义为知识蒸馏全文翻译https://baijiahao.baidu.com/s?id=1737
- 知识增强的预训练模型简介
NLP论文解读
©NLP论文解读原创•作者|杨健专栏系列概览该专栏主要介绍自然语言处理领域目前比较前沿的领域—知识增强的预训练语言模型。通过解读该主题具备代表性的论文以及对应的代码,为大家揭示当前最新的发展状况。为了能够和大家更好的分享自己的收获,笔者将遵循下面几个原则。1、理论讲解尽量深入浅出,通过举例子或者大白话讲解论文,而非仅针对原文翻译。2、针对论文中一些重要的术语,适时的做出解释。3、理论和实践相结合,
- AAAI 2020「自然语言处理(NLP)论文解读」文本简化要素分析
Shu灬下雨天
来源:AINLPer微信公众号编辑:ShuYini校稿:ShuYini时间:2020-2-17TILE:DiscourseLevelFactorsforSentenceDeletioninTextSimplification.Contributor:俄亥俄州立大学Paper:https://arxiv.org/abs/1911.10384v1Code:None文章摘要 文本简化需要对相关的句子
- 论文笔记-Generative Adversarial Nets
升不上三段的大鱼
论文链接:https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf论文解读:https://www.bilibili.com/video/BV1rb4y187vD?share_source=copy_web一句话总结:提出了生成模型框架GAN,包括一个生成模型G和一个判别模型D,用有监督的损失
- 多线程编程之存钱与取钱
周凡杨
javathread多线程存钱取钱
生活费问题是这样的:学生每月都需要生活费,家长一次预存一段时间的生活费,家长和学生使用统一的一个帐号,在学生每次取帐号中一部分钱,直到帐号中没钱时 通知家长存钱,而家长看到帐户还有钱则不存钱,直到帐户没钱时才存钱。
问题分析:首先问题中有三个实体,学生、家长、银行账户,所以设计程序时就要设计三个类。其中银行账户只有一个,学生和家长操作的是同一个银行账户,学生的行为是
- java中数组与List相互转换的方法
征客丶
JavaScriptjavajsonp
1.List转换成为数组。(这里的List是实体是ArrayList)
调用ArrayList的toArray方法。
toArray
public T[] toArray(T[] a)返回一个按照正确的顺序包含此列表中所有元素的数组;返回数组的运行时类型就是指定数组的运行时类型。如果列表能放入指定的数组,则返回放入此列表元素的数组。否则,将根据指定数组的运行时类型和此列表的大小分
- Shell 流程控制
daizj
流程控制if elsewhilecaseshell
Shell 流程控制
和Java、PHP等语言不一样,sh的流程控制不可为空,如(以下为PHP流程控制写法):
<?php
if(isset($_GET["q"])){
search(q);}else{// 不做任何事情}
在sh/bash里可不能这么写,如果else分支没有语句执行,就不要写这个else,就像这样 if else if
if 语句语
- Linux服务器新手操作之二
周凡杨
Linux 简单 操作
1.利用关键字搜寻Man Pages man -k keyword 其中-k 是选项,keyword是要搜寻的关键字 如果现在想使用whoami命令,但是只记住了前3个字符who,就可以使用 man -k who来搜寻关键字who的man命令 [haself@HA5-DZ26 ~]$ man -k
- socket聊天室之服务器搭建
朱辉辉33
socket
因为我们做的是聊天室,所以会有多个客户端,每个客户端我们用一个线程去实现,通过搭建一个服务器来实现从每个客户端来读取信息和发送信息。
我们先写客户端的线程。
public class ChatSocket extends Thread{
Socket socket;
public ChatSocket(Socket socket){
this.sock
- 利用finereport建设保险公司决策分析系统的思路和方法
老A不折腾
finereport金融保险分析系统报表系统项目开发
决策分析系统呈现的是数据页面,也就是俗称的报表,报表与报表间、数据与数据间都按照一定的逻辑设定,是业务人员查看、分析数据的平台,更是辅助领导们运营决策的平台。底层数据决定上层分析,所以建设决策分析系统一般包括数据层处理(数据仓库建设)。
项目背景介绍
通常,保险公司信息化程度很高,基本上都有业务处理系统(像集团业务处理系统、老业务处理系统、个人代理人系统等)、数据服务系统(通过
- 始终要页面在ifream的最顶层
林鹤霄
index.jsp中有ifream,但是session消失后要让login.jsp始终显示到ifream的最顶层。。。始终没搞定,后来反复琢磨之后,得到了解决办法,在这儿给大家分享下。。
index.jsp--->主要是加了颜色的那一句
<html>
<iframe name="top" ></iframe>
<ifram
- MySQL binlog恢复数据
aigo
mysql
1,先确保my.ini已经配置了binlog:
# binlog
log_bin = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.log
log_bin_index = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.index
log_error = D:/mysql-5.6.21-win
- OCX打成CBA包并实现自动安装与自动升级
alxw4616
ocxcab
近来手上有个项目,需要使用ocx控件
(ocx是什么?
http://baike.baidu.com/view/393671.htm)
在生产过程中我遇到了如下问题.
1. 如何让 ocx 自动安装?
a) 如何签名?
b) 如何打包?
c) 如何安装到指定目录?
2.
- Hashmap队列和PriorityQueue队列的应用
百合不是茶
Hashmap队列PriorityQueue队列
HashMap队列已经是学过了的,但是最近在用的时候不是很熟悉,刚刚重新看以一次,
HashMap是K,v键 ,值
put()添加元素
//下面试HashMap去掉重复的
package com.hashMapandPriorityQueue;
import java.util.H
- JDK1.5 returnvalue实例
bijian1013
javathreadjava多线程returnvalue
Callable接口:
返回结果并且可能抛出异常的任务。实现者定义了一个不带任何参数的叫做 call 的方法。
Callable 接口类似于 Runnable,两者都是为那些其实例可能被另一个线程执行的类设计的。但是 Runnable 不会返回结果,并且无法抛出经过检查的异常。
ExecutorService接口方
- angularjs指令中动态编译的方法(适用于有异步请求的情况) 内嵌指令无效
bijian1013
JavaScriptAngularJS
在directive的link中有一个$http请求,当请求完成后根据返回的值动态做element.append('......');这个操作,能显示没问题,可问题是我动态组的HTML里面有ng-click,发现显示出来的内容根本不执行ng-click绑定的方法!
 
- 【Java范型二】Java范型详解之extend限定范型参数的类型
bit1129
extend
在第一篇中,定义范型类时,使用如下的方式:
public class Generics<M, S, N> {
//M,S,N是范型参数
}
这种方式定义的范型类有两个基本的问题:
1. 范型参数定义的实例字段,如private M m = null;由于M的类型在运行时才能确定,那么我们在类的方法中,无法使用m,这跟定义pri
- 【HBase十三】HBase知识点总结
bit1129
hbase
1. 数据从MemStore flush到磁盘的触发条件有哪些?
a.显式调用flush,比如flush 'mytable'
b.MemStore中的数据容量超过flush的指定容量,hbase.hregion.memstore.flush.size,默认值是64M 2. Region的构成是怎么样?
1个Region由若干个Store组成
- 服务器被DDOS攻击防御的SHELL脚本
ronin47
mkdir /root/bin
vi /root/bin/dropip.sh
#!/bin/bash/bin/netstat -na|grep ESTABLISHED|awk ‘{print $5}’|awk -F:‘{print $1}’|sort|uniq -c|sort -rn|head -10|grep -v -E ’192.168|127.0′|awk ‘{if($2!=null&a
- java程序员生存手册-craps 游戏-一个简单的游戏
bylijinnan
java
import java.util.Random;
public class CrapsGame {
/**
*
*一个简单的赌*博游戏,游戏规则如下:
*玩家掷两个骰子,点数为1到6,如果第一次点数和为7或11,则玩家胜,
*如果点数和为2、3或12,则玩家输,
*如果和为其它点数,则记录第一次的点数和,然后继续掷骰,直至点数和等于第一次掷出的点
- TOMCAT启动提示NB: JAVA_HOME should point to a JDK not a JRE解决
开窍的石头
JAVA_HOME
当tomcat是解压的时候,用eclipse启动正常,点击startup.bat的时候启动报错;
报错如下:
The JAVA_HOME environment variable is not defined correctly
This environment variable is needed to run this program
NB: JAVA_HOME shou
- [操作系统内核]操作系统与互联网
comsci
操作系统
我首先申明:我这里所说的问题并不是针对哪个厂商的,仅仅是描述我对操作系统技术的一些看法
操作系统是一种与硬件层关系非常密切的系统软件,按理说,这种系统软件应该是由设计CPU和硬件板卡的厂商开发的,和软件公司没有直接的关系,也就是说,操作系统应该由做硬件的厂商来设计和开发
- 富文本框ckeditor_4.4.7 文本框的简单使用 支持IE11
cuityang
富文本框
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>知识库内容编辑</tit
- Property null not found
darrenzhu
datagridFlexAdvancedpropery null
When you got error message like "Property null not found ***", try to fix it by the following way:
1)if you are using AdvancedDatagrid, make sure you only update the data in the data prov
- MySQl数据库字符串替换函数使用
dcj3sjt126com
mysql函数替换
需求:需要将数据表中一个字段的值里面的所有的 . 替换成 _
原来的数据是 site.title site.keywords ....
替换后要为 site_title site_keywords
使用的SQL语句如下:
updat
- mac上终端起动MySQL的方法
dcj3sjt126com
mysqlmac
首先去官网下载: http://www.mysql.com/downloads/
我下载了5.6.11的dmg然后安装,安装完成之后..如果要用终端去玩SQL.那么一开始要输入很长的:/usr/local/mysql/bin/mysql
这不方便啊,好想像windows下的cmd里面一样输入mysql -uroot -p1这样...上网查了下..可以实现滴.
打开终端,输入:
1
- Gson使用一(Gson)
eksliang
jsongson
转载请出自出处:http://eksliang.iteye.com/blog/2175401 一.概述
从结构上看Json,所有的数据(data)最终都可以分解成三种类型:
第一种类型是标量(scalar),也就是一个单独的字符串(string)或数字(numbers),比如"ickes"这个字符串。
第二种类型是序列(sequence),又叫做数组(array)
- android点滴4
gundumw100
android
Android 47个小知识
http://www.open-open.com/lib/view/open1422676091314.html
Android实用代码七段(一)
http://www.cnblogs.com/over140/archive/2012/09/26/2611999.html
http://www.cnblogs.com/over140/arch
- JavaWeb之JSP基本语法
ihuning
javaweb
目录
JSP模版元素
JSP表达式
JSP脚本片断
EL表达式
JSP注释
特殊字符序列的转义处理
如何查找JSP页面中的错误
JSP模版元素
JSP页面中的静态HTML内容称之为JSP模版元素,在静态的HTML内容之中可以嵌套JSP
- App Extension编程指南(iOS8/OS X v10.10)中文版
啸笑天
ext
当iOS 8.0和OS X v10.10发布后,一个全新的概念出现在我们眼前,那就是应用扩展。顾名思义,应用扩展允许开发者扩展应用的自定义功能和内容,能够让用户在使用其他app时使用该项功能。你可以开发一个应用扩展来执行某些特定的任务,用户使用该扩展后就可以在多个上下文环境中执行该任务。比如说,你提供了一个能让用户把内容分
- SQLServer实现无限级树结构
macroli
oraclesqlSQL Server
表结构如下:
数据库id path titlesort 排序 1 0 首页 0 2 0,1 新闻 1 3 0,2 JAVA 2 4 0,3 JSP 3 5 0,2,3 业界动态 2 6 0,2,3 国内新闻 1
创建一个存储过程来实现,如果要在页面上使用可以设置一个返回变量将至传过去
create procedure test
as
begin
decla
- Css居中div,Css居中img,Css居中文本,Css垂直居中div
qiaolevip
众观千象学习永无止境每天进步一点点css
/**********Css居中Div**********/
div.center {
width: 100px;
margin: 0 auto;
}
/**********Css居中img**********/
img.center {
display: block;
margin-left: auto;
margin-right: auto;
}
- Oracle 常用操作(实用)
吃猫的鱼
oracle
SQL>select text from all_source where owner=user and name=upper('&plsql_name');
SQL>select * from user_ind_columns where index_name=upper('&index_name'); 将表记录恢复到指定时间段以前
- iOS中使用RSA对数据进行加密解密
witcheryne
iosrsaiPhoneobjective c
RSA算法是一种非对称加密算法,常被用于加密数据传输.如果配合上数字摘要算法, 也可以用于文件签名.
本文将讨论如何在iOS中使用RSA传输加密数据. 本文环境
mac os
openssl-1.0.1j, openssl需要使用1.x版本, 推荐使用[homebrew](http://brew.sh/)安装.
Java 8
RSA基本原理
RS