一、第一个是KNN的代码,这里的trick是计算距离的三种方法,核心的话还是python和machine learning中非常实用的向量化操作,可以大大的提高计算速度。
import numpy as np
class KNearestNeighbor(object):#首先是定义一个处理KNN的类
""" a kNN classifier with L2 distance """
def __init__(self):
pass
def train(self, X, y):
"""
Train the classifier. For k-nearest neighbors this is just
memorizing the training data.
Inputs:
- X: A numpy array of shape (num_train, D) containing the training data
consisting of num_train samples each of dimension D.
- y: A numpy array of shape (N,) containing the training labels, where
y[i] is the label for X[i].
"""
self.X_train = X
self.y_train = y
def predict(self, X, k=1, num_loops=0):
"""
Predict labels for test data using this classifier.
Inputs:
- X: A numpy array of shape (num_test, D) containing test data consisting
of num_test samples each of dimension D.
- k: The number of nearest neighbors that vote for the predicted labels.
- num_loops: Determines which implementation to use to compute distances
between training points and testing points.
Returns:
- y: A numpy array of shape (num_test,) containing predicted labels for the
test data, where y[i] is the predicted label for the test point X[i].
"""
if num_loops == 0:
dists = self.compute_distances_no_loops(X)
elif num_loops == 1:
dists = self.compute_distances_one_loop(X)
elif num_loops == 2:
dists = self.compute_distances_two_loops(X)
else:
raise ValueError('Invalid value %d for num_loops' % num_loops)
return self.predict_labels(dists, k=k)
def compute_distances_two_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a nested loop over both the training data and the
test data.
Inputs:
- X: A numpy array of shape (num_test, D) containing test data.
Returns:
- dists: A numpy array of shape (num_test, num_train) where dists[i, j]
is the Euclidean distance between the ith test point and the jth training
point.
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
for j in xrange(num_train):
dists[i][j] = np.sqrt(np.sum(np.square(self.X_train[j,:] - X[i,:])))
#####################################################################
# TODO: #
# Compute the l2 distance between the ith test point and the jth #
# training point, and store the result in dists[i, j]. You should #
# not use a loop over dimension. #
#####################################################################
#####################################################################
# END OF YOUR CODE #
#####################################################################
return dists
def compute_distances_one_loop(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a single loop over the test data.
Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
#######################################################################
# TODO: #
# Compute the l2 distance between the ith test point and all training #
# points, and store the result in dists[i, :]. #
#######################################################################
dists[i,:] = np.sqrt(np.sum(np.square(self.X_train-X[i,:]),axis = 1))
#######################################################################
# END OF YOUR CODE #
#######################################################################
return dists
def compute_distances_no_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using no explicit loops.
Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
#########################################################################
# TODO: #
# Compute the l2 distance between all test points and all training #
# points without using any explicit loops, and store the result in #
# dists. #
# #
# You should implement this function using only basic array operations; #
# in particular you should not use functions from scipy. #
# #
# HINT: Try to formulate the l2 distance using matrix multiplication #
# and two broadcast sums. #
#########################################################################
dists = np.multiply(np.dot(X,self.X_train.T),-2)
sq1 = np.sum(np.square(X),axis=1,keepdims = True)
sq2 = np.sum(np.square(self.X_train),axis=1)
dists = np.add(dists,sq1)
dists = np.add(dists,sq2)
dists = np.sqrt(dists)
#########################################################################
# END OF YOUR CODE #
#########################################################################
return dists
def predict_labels(self, dists, k=1):
"""
Given a matrix of distances between test points and training points,
predict a label for each test point.
Inputs:
- dists: A numpy array of shape (num_test, num_train) where dists[i, j]
gives the distance betwen the ith test point and the jth training point.
Returns:
- y: A numpy array of shape (num_test,) containing predicted labels for the
test data, where y[i] is the predicted label for the test point X[i].
"""
num_test = dists.shape[0]
y_pred = np.zeros(num_test)
for i in xrange(num_test):
# A list of length k storing the labels of the k nearest neighbors to
# the ith test point.
closest_y = []
#########################################################################
# TODO: #
# Use the distance matrix to find the k nearest neighbors of the ith #
# training point, and use self.y_train to find the labels of these #
# neighbors. Store these labels in closest_y. #
# Hint: Look up the function numpy.argsort. #
#########################################################################
closest_y = self.y_train[np.argsort(dists[i,:])[:k]]
#########################################################################
# TODO: #
# Now that you have found the labels of the k nearest neighbors, you #
# need to find the most common label in the list closest_y of labels. #
# Store this label in y_pred[i]. Break ties by choosing the smaller #
# label. #
#########################################################################
y_pred[i] = np.argmax(np.bincount(closest_y)) #########################################################################
# END OF YOUR CODE #
#########################################################################
return y_pred
测试和交叉验证代码:
#coding:utf-8
'''
Created on 2017
@author:
'''
import random
import numpy as np
from assignment1.data_utils import load_CIFAR10
from assignment1.classifiers.k_nearest_neighbor import KNearestNeighbor
import matplotlib.pyplot as plt
# This is a bit of magic to make matplotlib figures appear inline in the notebook
# rather than in a new window.
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
X_train, y_train, X_test, y_test = load_CIFAR10('../datasets')
# As a sanity check, we print out the size of the training and test data.
print('Training data shape: ', X_train.shape)
print('Training labels shape: ', y_train.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
# 从数据集中展示一部分数据
# 每个类别展示若干张对应图片
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
num_classes = len(classes)
samples_per_class = 7
for y, cls in enumerate(classes):
idxs = np.flatnonzero(y_train == y)
idxs = np.random.choice(idxs, samples_per_class, replace=False)
for i, idx in enumerate(idxs):
plt_idx = i * num_classes + y + 1
plt.subplot(samples_per_class, num_classes, plt_idx)
plt.imshow(X_train[idx].astype('uint8'))
plt.axis('off')
if i == 0:
plt.title(cls)
plt.show()
# 截取部分样本数据,以提高本作业的执行效率
num_training = 5000
mask = range(num_training)
X_train = X_train[mask]
y_train = y_train[mask]
num_test = 500
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]
# reshape训练和测试数据,转换为行的形式
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
print(X_train.shape)
print(X_test.shape)
classifier = KNearestNeighbor()
classifier.train(X_train, y_train)
dists = classifier.compute_distances_two_loops(X_test)
print(dists.shape)
plt.imshow(dists, interpolation='none')
plt.show()
# Now implement the function predict_labels and run the code below:
# k=1时
y_test_pred = classifier.predict_labels(dists, k=1)
# Compute and print the fraction of correctly predicted examples
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy))
# k=5时
y_test_pred = classifier.predict_labels(dists, k=5)
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy))
####测试三种距离计算法的效率
dists_one = classifier.compute_distances_one_loop(X_test)
difference = np.linalg.norm(dists - dists_one, ord='fro')
print('Difference was: %f' % (difference, ))
if difference < 0.001:
print('Good! The distance matrices are the same')
else:
print('Uh-oh! The distance matrices are different')
dists_two = classifier.compute_distances_no_loops(X_test)
difference = np.linalg.norm(dists - dists_two, ord='fro')
print('Difference was: %f' % (difference, ))
if difference < 0.001:
print('Good! The distance matrices are the same')
else:
print('Uh-oh! The distance matrices are different')
def time_function(f, *args):
"""
Call a function f with args and return the time (in seconds) that it took to execute.
"""
import time
tic = time.time()
f(*args)
toc = time.time()
return toc - tic
two_loop_time = time_function(classifier.compute_distances_two_loops, X_test)
print('Two loop version took %f seconds' % two_loop_time)
one_loop_time = time_function(classifier.compute_distances_one_loop, X_test)
print('One loop version took %f seconds' % one_loop_time)
no_loop_time = time_function(classifier.compute_distances_no_loops, X_test)
print('No loop version took %f seconds' % no_loop_time)
# 交叉验证
num_folds = 5
k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]
X_train_folds = []
y_train_folds = []
################################################################################
# TODO: #
# Split up the training data into folds. After splitting, X_train_folds and #
# y_train_folds should each be lists of length num_folds, where #
# y_train_folds[i] is the label vector for the points in X_train_folds[i]. #
# Hint: Look up the numpy array_split function. #
################################################################################
#数据划分
X_train_folds = np.array_split(X_train, num_folds);
y_train_folds = np.array_split(y_train, num_folds)
################################################################################
# END OF YOUR CODE #
################################################################################
# A dictionary holding the accuracies for different values of k that we find
# when running cross-validation. After running cross-validation,
# k_to_accuracies[k] should be a list of length num_folds giving the different
# accuracy values that we found when using that value of k.
k_to_accuracies = {}
################################################################################
# TODO: #
# Perform k-fold cross validation to find the best value of k. For each #
# possible value of k, run the k-nearest-neighbor algorithm num_folds times, #
# where in each case you use all but one of the folds as training data and the #
# last fold as a validation set. Store the accuracies for all fold and all #
# values of k in the k_to_accuracies dictionary. #
################################################################################
for k in k_choices:
k_to_accuracies[k] = []
for k in k_choices:#find the best k-value
for i in range(num_folds):
X_train_cv = np.vstack(X_train_folds[:i]+X_train_folds[i+1:])
X_test_cv = X_train_folds[i]
y_train_cv = np.hstack(y_train_folds[:i]+y_train_folds[i+1:]) #size:4000
y_test_cv = y_train_folds[i]
classifier.train(X_train_cv, y_train_cv)
dists_cv = classifier.compute_distances_no_loops(X_test_cv)
y_test_pred = classifier.predict_labels(dists_cv, k)
num_correct = np.sum(y_test_pred == y_test_cv)
accuracy = float(num_correct) / y_test_cv.shape[0]
k_to_accuracies[k].append(accuracy)
################################################################################
# END OF YOUR CODE #
################################################################################
# Print out the computed accuracies
for k in sorted(k_to_accuracies):
for accuracy in k_to_accuracies[k]:
print('k = %d, accuracy = %f' % (k, accuracy))
# plot the raw observations
for k in k_choices:
accuracies = k_to_accuracies[k]
plt.scatter([k] * len(accuracies), accuracies)
# plot the trend line with error bars that correspond to standard deviation
accuracies_mean = np.array([np.mean(v) for k,v in sorted(k_to_accuracies.items())])
accuracies_std = np.array([np.std(v) for k,v in sorted(k_to_accuracies.items())])
plt.errorbar(k_choices, accuracies_mean, yerr=accuracies_std)
plt.title('Cross-validation on k')
plt.xlabel('k')
plt.ylabel('Cross-validation accuracy')
plt.show()
testKNN.py
import numpy as np
import random
import os
import sys
sys.path.append('cs231n.classifiers')
from cs231n.classifiers.k_nearest_neighbor import KNearestNeighbor
from six.moves import cPickle as pickle
from scipy.misc import imread
from cs231n.data_utils import load_CIFAR10
xtr,ytr,xte,yte=load_CIFAR10('data/cifar10')
num_training = 5000
mask = range(num_training)
X_train = xtr[mask]
y_train = ytr[mask]
num_test = 500
mask = range(num_test)
X_test = xte[mask]
y_test = yte[mask]
# Reshape the image data into rows
X_train = X_train.reshape(X_train.shape[0], 32*32*3)
X_test = X_test.reshape(X_test.shape[0],32*32*3)
print X_train.shape, X_test.shape
num_folds = 5
k_choices = [1, 5, 10, 15, 20, 50, 100]
X_train_folds = []
y_train_folds = []
X_train_folds = np.array_split(X_train,num_folds,axis=0)
y_train_folds = np.array_split(y_train,num_folds,axis=0)
k_to_accuracies = {}
nn = KNearestNeighbor()
for k in k_choices:
k_to_accuracies[k] = []
for j in xrange(num_folds):
X_tr = np.array(X_train_folds[0:j]+X_train_folds[(j+1):])
X_tr = np.reshape(X_tr,(X_train.shape[0]*(num_folds-1)/num_folds,-1))
y_tr = np.array(y_train_folds[0:j]+y_train_folds[(j+1):])
y_tr = np.reshape(y_tr,(X_train.shape[0]*(num_folds-1)/num_folds))
X_te = np.array(X_train_folds[j])
X_te = np.reshape( X_te, (X_train.shape[0]/num_folds,-1))
y_te = np.array(y_train_folds[j])
y_te = np.reshape(y_te,(y_train.shape[0]/num_folds))
nn.train(X_tr,y_tr)
yte_pred = nn.predict(X_te,k,1)
num_correct = np.sum(y_te==yte_pred)
num_test1 = np.shape(X_te)[0]
accuracy = float(num_correct)/num_test1
k_to_accuracies[k].append(accuracy)
for k in sorted(k_to_accuracies):
for accuracy in k_to_accuracies[k]:
print 'k = %d, accuracy = %f' % (k, accuracy)
accuracies_mean = np.array([np.mean(v) for k,v in sorted(k_to_accuracies.items())])
accuracies_std = np.array([np.std(v) for k,v in sorted(k_to_accuracies.items())])
plt.errorbar(k_choices, accuracies_mean, yerr=accuracies_std)
plt.title('Cross-validation on k')
plt.xlabel('k')
plt.ylabel('Cross-validation accuracy')
plt.show()
plt.savefig("k.png")
plt.clf()
二、softmax
同样是需要完成naive和vector的两种操作来比较速度。
import numpy as np
def softmax_loss_naive(W, X, y, reg):
# Initialize the loss and gradient to zero.
loss = 0.0
dW = np.zeros_like(W) # 得到一个和W同样shape的矩阵
dW_each = np.zeros_like(W)
num_train, dim = X.shape
num_class = W.shape[1]
f = X.dot(W) # N by C
# Considering the Numeric Stability
f_max = np.reshape(np.max(f, axis=1), (num_train, 1)) # 找到最大值然后减去,这样是为了防止后面的操作会出现数值上的一些偏差
prob = np.exp(f - f_max) / np.sum(np.exp(f - f_max), axis=1, keepdims=True) # N by C
y_trueClass = np.zeros_like(prob)
y_trueClass[np.arange(num_train), y] = 1.0
for i in xrange(num_train):
for j in xrange(num_class):
loss += -(y_trueClass[i, j] * np.log(prob[i, j])) # 损失函数的公式L = -(1/N)∑i∑j1(k=yi)log(exp(fk)/∑j exp(fj)) + λR(W)
dW_each[:, j] = -(y_trueClass[i, j] - prob[i, j]) * X[i, :]#梯度的公式 ∇Wk L = -(1/N)∑i xiT(pi,m-Pm) + 2λWk, where Pk = exp(fk)/∑j exp(fj
dW += dW_each #这是把每个类的放在了一起
loss /= num_train
loss += 0.5 * reg * np.sum(W * W) # 加上正则
dW /= num_traindW += reg * W
return loss, dW
def softmax_loss_vectorized(W, X, y, reg):
"""
Softmax loss function, vectorized version.
Inputs and outputs are the same as softmax_loss_naive.
"""
# Initialize the loss and gradient to zero.
loss = 0.0
dW = np.zeros_like(W) # D by C
num_train, dim = X.shape
f = X.dot(W) # N by C
# Considering the Numeric Stability
f_max = np.reshape(np.max(f, axis=1), (num_train, 1)) # N by 1
prob = np.exp(f - f_max) / np.sum(np.exp(f - f_max), axis=1), keepdims=True)
y_trueClass = np.zeros_like(prob)
y_trueClass[range(num_train), y] = 1.0 # N by C
loss += -np.sum(y_trueClass * np.log(prob)) / num_train + 0.5 * reg * np.sum(W * W)#向量化直接操作即可
dW += -np.dot(X.T, y_trueClass - prob) / num_train + reg * W
return loss, dW
三、SVM
import numpy as np
def svm_loss_naive(W, X, y, reg):
"""
Inputs:
- W: A numpy array of shape (D, C) containing weights.
- X: A numpy array of shape (N, D) containing a minibatch of data.
- y: A numpy array of shape (N,) containing training labels; y[i] = c means
that X[i] has label c, where 0 <= c < C.
- reg: (float) regularization strength
Returns a tuple of:
- loss as single float
- gradient with respect to weights W; an array of same shape as W
"""
dW = np.zeros(W.shape) # initialize the gradient as zero
# compute the loss and the gradient
num_classes = W.shape[1]
num_train = X.shape[0]
loss = 0.0
for i in xrange(num_train):
scores = X[i].dot(W)
correct_class_score = scores[y[i]]
for j in xrange(num_classes):
if j == y[i]: #根据公式,正确的那个不用算
continue
margin = scores[j] - correct_class_score + 1 # note delta = 1
if margin > 0:
loss += margin
dW[:, y[i]] += -X[i, :] # 根据公式:∇Wyi Li = - xiT(∑j≠yi1(xiWj - xiWyi +1>0)) + 2λWyi
dW[:, j] += X[i, :] # 根据公式: ∇Wj Li = xiT 1(xiWj - xiWyi +1>0) + 2λWj , (j≠yi)
# Right now the loss is a sum over all training examples, but we want it
# to be an average instead so we divide by num_train.
loss /= num_train
dW /= num_train
# Add regularization to the loss.
loss += 0.5 * reg * np.sum(W * W)
dW += reg * W
return loss, dW
def svm_loss_vectorized(W, X, y, reg):
"""
Structured SVM loss function, vectorized implementation.Inputs and outputs
are the same as svm_loss_naive.
"""
loss = 0.0
dW = np.zeros(W.shape) # initialize the gradient as zero
scores = X.dot(W) # N by C
num_train = X.shape[0]
num_classes = W.shape[1]
scores_correct = scores[np.arange(num_train), y] # 1 by N
scores_correct = np.reshape(scores_correct, (num_train, 1)) # N by 1
margins = scores - scores_correct + 1.0 # N by C
margins[np.arange(num_train), y] = 0.0
margins[margins <= 0] = 0.0
loss += np.sum(margins) / num_train
loss += 0.5 * reg * np.sum(W * W)
# compute the gradient
margins[margins > 0] = 1.0
row_sum = np.sum(margins, axis=1) # 1 by N
margins[np.arange(num_train), y] = -row_sum
dW += np.dot(X.T, margins)/num_train + reg * W # D by C
return loss, dW
SVM_test.py
#-*-coding:utf-8-*-
import random
import numpy as np
import matplotlib.pyplot as plt
from cs231n.data_utils import load_CIFAR10
# Load the raw CIFAR-10 data.
cifar10_dir = 'data/cifar10'
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
'''
# As a sanity check, we print out the size of the training and test data.
print('Training data shape: ', X_train.shape)
print('Training labels shape: ', y_train.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
'''
'''
# Visualize some examples from the dataset.
# We show a few examples of training images from each class.
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
num_classes = len(classes)
samples_per_class = 7
for y, cls in enumerate(classes):
idxs = np.flatnonzero(y_train == y)
idxs = np.random.choice(idxs, samples_per_class, replace=False)
for i, idx in enumerate(idxs):
plt_idx = i * num_classes + y + 1
plt.subplot(samples_per_class, num_classes, plt_idx)
plt.imshow(X_train[idx].astype('uint8'))
plt.axis('off')
if i == 0:
plt.title(cls)
plt.show()
'''
# Split the data into train, val, and test sets. In addition we will
# create a small development set as a subset of the training data;
# we can use this for development so our code runs faster.
num_training = 49000
num_validation = 1000
num_test = 1000
num_dev = 500
# Our validation set will be num_validation points from the original training set.
mask = range(num_training, num_training + num_validation)
X_val = X_train[mask]
y_val = y_train[mask]
# Our training set will be the first num_train points from the original training set.
mask = range(num_training)
X_train = X_train[mask]
y_train = y_train[mask]
# We will also make a development set, which is a small subset of the training set.
mask = np.random.choice(num_training, num_dev, replace=False)
X_dev = X_train[mask]
y_dev = y_train[mask]
# We use the first num_test points of the original test set as our test set.
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]
'''
print('Train data shape: ', X_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', X_val.shape)
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
'''
# Preprocessing: reshape the image data into rows
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_val = np.reshape(X_val, (X_val.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))
'''
# As a sanity check, print out the shapes of the data
print('Training data shape: ', X_train.shape)
print('Validation data shape: ', X_val.shape)
print('Test data shape: ', X_test.shape)
print('dev data shape: ', X_dev.shape)
'''
# Preprocessing: subtract the mean image
# first: compute the image mean based on the training data
mean_image = np.mean(X_train, axis=0)
'''
print(mean_image[:10]) # print a few of the elements
plt.figure(figsize=(4,4))
plt.imshow(mean_image.reshape((32,32,3)).astype('uint8')) # visualize the mean image
plt.show()
'''
# second: subtract the mean image from train and test data
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
X_dev -= mean_image
# third: append the bias dimension of ones (i.e. bias trick) so that our SVM
# only has to worry about optimizing a single weight matrix W.
X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
#print(X_train.shape, X_val.shape, X_test.shape, X_dev.shape)
# Evaluate the naive implementation of the loss we provided for you:
from cs231n.classifiers.linear_svm import svm_loss_naive
import time
# generate a random SVM weight matrix of small numbers
W = np.random.randn(3073, 10) * 0.0001
loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.000005)
print('loss: %f' % (loss, )) #输出:loss: 9.548658
# Compute the loss and its gradient at W.
loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.0)
'''
# Numerically compute the gradient along several randomly chosen dimensions, and
# compare them with your analytically computed gradient. The numbers should match
# almost exactly along all dimensions.
from cs231n.gradient_check import grad_check_sparse
f = lambda w: svm_loss_naive(w, X_dev, y_dev, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, grad)
# do the gradient check once again with regularization turned on
# you didn't forget the regularization gradient did you?
loss, grad = svm_loss_naive(W, X_dev, y_dev, 5e1)
f = lambda w: svm_loss_naive(w, X_dev, y_dev, 5e1)[0]
grad_numerical = grad_check_sparse(f, W, grad)
'''
'''
# Next implement the function svm_loss_vectorized; for now only compute the loss;
# we will implement the gradient in a moment.
tic = time.time()
loss_naive, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Naive loss: %e computed in %fs' % (loss_naive, toc - tic))
from cs231n.classifiers.linear_svm import svm_loss_vectorized
tic = time.time()
loss_vectorized, _ = svm_loss_vectorized(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic))
# The losses should match but your vectorized implementation should be much faster.
print('difference: %f' % (loss_naive - loss_vectorized))
'''
'''
# Complete the implementation of svm_loss_vectorized, and compute the gradient
# of the loss function in a vectorized way.
# The naive implementation and the vectorized implementation should match, but
# the vectorized version should still be much faster.
tic = time.time()
loss_naive, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Naive loss and gradient: computed in %fs' % (toc - tic))
tic = time.time()
#_, grad_vectorized = svm_loss_vectorized(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Vectorized loss and gradient: computed in %fs' % (toc - tic))
# The loss is a single number, so it is easy to compare the values computed
# by the two implementations. The gradient on the other hand is a matrix, so
# we use the Frobenius norm to compare them.
#difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
#print('difference: %f' % difference)
'''
# In the file linear_classifier.py, implement SGD in the function
# LinearClassifier.train() and then run it with the code below.
from cs231n.classifiers.linear_classifier import LinearSVM
svm = LinearSVM()
tic = time.time()
loss_hist = svm.train(X_train, y_train, learning_rate=1e-7, reg=2.5e4, num_iters=1500, verbose=True)
toc = time.time()
print('That took %fs' % (toc - tic))
'''
# A useful debugging strategy is to plot the loss as a function of
# iteration number:
plt.plot(loss_hist)
plt.xlabel('Iteration number')
plt.ylabel('Loss value')
plt.show()
'''
# Write the LinearSVM.predict function and evaluate the performance on both the
# training and validation set
y_train_pred = svm.predict(X_train)
print('training accuracy: %f' % (np.mean(y_train == y_train_pred), ))
y_val_pred = svm.predict(X_val)
print('validation accuracy: %f' % (np.mean(y_val == y_val_pred), ))
# Use the validation set to tune hyperparameters (regularization strength and
# learning rate). You should experiment with different ranges for the learning
# rates and regularization strengths; if you are careful you should be able to
# get a classification accuracy of about 0.4 on the validation set.
learning_rates = [1e-7, 5e-5]
regularization_strengths = [2.5e4, 5e4]
# results is dictionary mapping tuples of the form
# (learning_rate, regularization_strength) to tuples of the form
# (training_accuracy, validation_accuracy). The accuracy is simply the fraction
# of data points that are correctly classified.
results = {}
best_val = -1 # The highest validation accuracy that we have seen so far.
best_svm = None # The LinearSVM object that achieved the highest validation rate.
iters= 1000
for lr in learning_rates:
for rs in regularization_strengths:
svm = LinearSVM()
svm.train(X_train, y_train, learning_rate=lr, reg=rs, num_iters=iters)
y_train_pred = svm.predict(X_train)
acc_train = np.mean(y_train == y_train_pred)
y_val_pred = svm.predict(X_val)
acc_val = np.mean(y_val == y_val_pred)
results[(lr, rs)] = (acc_train, acc_val)
if best_val < acc_val:
best_val = acc_val
best_svm = svm
# Print out results.
for lr, reg in sorted(results):
train_accuracy, val_accuracy = results[(lr, reg)]
print 'lr %e reg %e train accuracy: %f val accuracy: %f' % (
lr, reg, train_accuracy, val_accuracy)
print 'best validation accuracy achieved during cross-validation: %f' % best_val
'''
# Visualize the cross-validation results
import math
x_scatter = [math.log10(x[0]) for x in results]
y_scatter = [math.log10(x[1]) for x in results]
# plot training accuracy
marker_size = 100
colors = [results[x][0] for x in results]
plt.subplot(2, 1, 1)
plt.scatter(x_scatter, y_scatter, marker_size, c=colors)
plt.colorbar()
plt.xlabel('log learning rate')
plt.ylabel('log regularization strength')
plt.title('CIFAR-10 training accuracy')
# plot validation accuracy
colors = [results[x][1] for x in results] # default size of markers is 20
plt.subplot(2, 1, 2)
plt.scatter(x_scatter, y_scatter, marker_size, c=colors)
plt.colorbar()
plt.xlabel('log learning rate')
plt.ylabel('log regularization strength')
plt.title('CIFAR-10 validation accuracy')
plt.show()
'''
# Evaluate the best svm on test set
y_test_pred = best_svm.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print('linear SVM on raw pixels final test set accuracy: %f' % test_accuracy)
# Visualize the learned weights for each class.
# Depending on your choice of learning rate and regularization strength, these may
# or may not be nice to look at.
w = best_svm.W[:-1, :] # strip out the bias
w = w.reshape(32, 32, 3, 10)
w_min, w_max = np.min(w), np.max(w)
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for i in range(10):
plt.subplot(2, 5, i + 1)
# Rescale the weights to be between 0 and 255
wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min)
plt.imshow(wimg.astype('uint8'))
plt.axis('off')
plt.title(classes[i])
plt.show()
四、linear_classifier
从编程思路上来看,上面三个是不同的策略,确切的说是线性分类器的集中方法,所以我们用一个LinearClassifier类来调用他们。
from linear_svm import *
from softmax import *
class LinearClassifier(object):
def __init__(self):
self.W = None
def train(self, X, y, learning_rate=1e-3, reg=1e-5, num_iters=100,
batch_size=200, verbose=True): #注意这里传递的参数设置
"""
Train this linear classifier using stochastic gradient descent.
Inputs:
- X: A numpy array of shape (N, D) containing training data; there are N
training samples each of dimension D.
- y: A numpy array of shape (N,) containing training labels; y[i] = c
means that X[i] has label 0 <= c < C for C classes.
- learning_rate: (float) learning rate for optimization.
- reg: (float) regularization strength.
- num_iters: (integer) number of steps to take when optimizing
- batch_size: (integer) number of training examples to use at each step.
- verbose: (boolean) If true, print progress during optimization.
Outputs:
A list containing the value of the loss function at each training iteration.
"""
num_train, dim = X.shape
# assume y takes values 0...K-1 where K is number of classes
num_classes = np.max(y) + 1
if self.W is None:
# lazily initialize W
self.W = 0.001 * np.random.randn(dim, num_classes) # 初始化W
# Run stochastic gradient descent(Mini-Batch) to optimize W
loss_history = []
for it in xrange(num_iters): #每次随机取batch的数据来进行梯度下降
X_batch = None
y_batch = None
# Sampling with replacement is faster than sampling without replacement.
sample_index = np.random.choice(num_train, batch_size, replace=False)
X_batch = X[sample_index, :] # batch_size by D
y_batch = y[sample_index] # 1 by batch_size
# evaluate loss and gradient
loss, grad = self.loss(X_batch, y_batch, reg)
loss_history.append(loss)
# perform parameter update
self.W += -learning_rate * grad
if verbose and it % 100 == 0:
print 'Iteration %d / %d: loss %f' % (it, num_iters, loss)
return loss_history
def predict(self, X):
"""
Use the trained weights of this linear classifier to predict labels for
data points.
Inputs:
- X: D x N array of training data. Each column is a D-dimensional point.
Returns:
- y_pred: Predicted labels for the data in X. y_pred is a 1-dimensional
array of length N, and each element is an integer giving the
predicted class.
"""
y_pred = np.zeros(X.shape[1]) # 1 by N
X=X.T
y_pred = np.argmax(X.dot(self.W), axis=0) #预测直接找到最后y最大的那个值
return y_pred
def loss(self, X_batch, y_batch, reg):
"""
Compute the loss function and its derivative.
Subclasses will override this.
Inputs:
- X_batch: A numpy array of shape (N, D) containing a minibatch of N
data points; each point has dimension D.
- y_batch: A numpy array of shape (N,) containing labels for the minibatch.
- reg: (float) regularization strength.
Returns: A tuple containing:
- loss as a single float
- gradient with respect to self.W; an array of the same shape as W
"""
pass
class LinearSVM(LinearClassifier):
"""
A subclass that uses the Multiclass SVM loss function
"""
def loss(self, X_batch, y_batch, reg):
return svm_loss_vectorized(self.W, X_batch, y_batch, reg)
class Softmax(LinearClassifier):
"""
A subclass that uses the Softmax + Cross-entropy loss function
"""
def loss(self, X_batch, y_batch, reg):
return softmax_loss_vectorized(self.W, X_batch, y_batch, reg)
Softmax_test.py
#-*-coding:utf-8-*-
from __future__ import print_function
import random
import numpy as np
from cs231n.data_utils import load_CIFAR10
import matplotlib.pyplot as plt
#matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
cifar10_dir = 'data/cifar10'
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
num_training=49000
num_validation=1000
num_test=1000
num_dev=500
mask = list(range(num_training,num_training+num_validation))
x_val = X_train[mask]
y_val = y_train[mask]
mask = list(range(num_training))
x_train = X_train[mask]
y_train = y_train[mask]
mask = list(range(num_test))
x_test = X_test[mask]
y_test = y_test[mask]
mask = np.random.choice(num_training, num_dev, replace=False)
x_dev = X_train[mask]
y_dev = y_train[mask]
#reshape the image date into rows
x_train = np.reshape(x_train,(x_train.shape[0],-1))
x_test = np.reshape(x_test,(x_test.shape[0],-1))
x_dev = np.reshape(x_dev,(x_dev.shape[0],-1))
x_val = np.reshape(x_val,(x_val.shape[0],-1))
# Normalize the data: subtract the mean image
mean_image = np.mean(x_train,axis=0)
x_train -= mean_image
x_val -= mean_image
x_dev -= mean_image
x_test -= mean_image
# add bias dimension and transform into columns
x_train = np.hstack([x_train,np.ones((x_train.shape[0],1))])
x_test = np.hstack([x_test,np.ones((x_test.shape[0],1))])
x_dev = np.hstack([x_dev,np.ones((x_dev.shape[0],1))])
x_val = np.hstack([x_val,np.ones((x_val.shape[0],1))])
from cs231n.classifiers.softmax import softmax_loss_naive
import time
# Generate a random softmax weight matrix and use it to compute the loss.
w = np.random.randn(x_train.shape[1],10)*0.0001
loss, grad = softmax_loss_naive(w, x_dev, y_dev, 0.0)
'''
# As we did for the SVM, use numeric gradient checking as a debugging tool.
# The numeric gradient should be close to the analytic gradient.
from cs231n.gradient_check import grad_check_sparse
f = lambda w: softmax_loss_naive(w, x_dev, y_dev, 0.0)[0]
grad_numerical = grad_check_sparse(f, w, grad, 10)
# similar to SVM case, do another gradient check with regularization
loss, grad = softmax_loss_naive(w, x_dev, y_dev, 5e1)
f = lambda w: softmax_loss_naive(w, x_dev, y_dev, 5e1)[0]
grad_numerical = grad_check_sparse(f, w, grad, 10)
'''
'''
# Now that we have a naive implementation of the softmax loss function and its gradient,
# implement a vectorized version in softmax_loss_vectorized.
# The two versions should compute the same results, but the vectorized version should be
# much faster.
tic = time.time()
loss_naive, grad_naive = softmax_loss_naive(w, x_dev, y_dev, 0.000005)
toc = time.time()
print('naive loss: %e computed in %fs' % (loss_naive, toc - tic))
from cs231n.classifiers.softmax import softmax_loss_vectorized
tic = time.time()
loss_vectorized, grad_vectorized = softmax_loss_vectorized(w, x_dev, y_dev, 0.000005)
toc = time.time()
print('vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic))
# As we did for the SVM, we use the Frobenius norm to compare the two versions
# of the gradient.
grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
print('Loss difference: %f' % np.abs(loss_naive - loss_vectorized))
print('Gradient difference: %f' % grad_difference)
'''
# Use the validation set to tune hyperparameters (regularization strength and
# learning rate). You should experiment with different ranges for the learning
# rates and regularization strengths; if you are careful you should be able to
# get a classification accuracy of over 0.35 on the validation set.
from cs231n.classifiers import Softmax
results = {}
best_val = -1
best_softmax = None
learning_rates = [1e-7, 5e-7]
regularization_strengths = [2.5e4, 5e4]
################################################################################
# TODO: #
# Use the validation set to set the learning rate and regularization strength. #
# This should be identical to the validation that you did for the SVM; save #
# the best trained softmax classifer in best_softmax. #
################################################################################
iters= 1000
for lr in learning_rates:
for rs in regularization_strengths:
softmax = Softmax()
softmax.train(x_train, y_train, learning_rate=lr, reg=rs, num_iters=iters)
y_train_pred = softmax.predict(x_train)
acc_train = np.mean(y_train == y_train_pred)
y_val_pred = softmax.predict(x_val)
acc_val = np.mean(y_val == y_val_pred)
results[(lr, rs)] = (acc_train, acc_val)
if best_val < acc_val:
best_val = acc_val
best_softmax = softmax
################################################################################
# END OF YOUR CODE #
################################################################################
# Print out results.
for lr, reg in sorted(results):
train_accuracy, val_accuracy = results[(lr, reg)]
print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
lr, reg, train_accuracy, val_accuracy))
print('best validation accuracy achieved during cross-validation: %f' % best_val)
# evaluate on test set
# Evaluate the best softmax on test set
y_test_pred = best_softmax.predict(x_test)
test_accuracy = np.mean(y_test == y_test_pred)
print('softmax on raw pixels final test set accuracy: %f' % (test_accuracy, ))
# Visualize the learned weights for each class
w = best_softmax.W[:-1, :] # strip out the bias
w = w.reshape(32, 32, 3, 10)
w_min, w_max = np.min(w), np.max(w)
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for i in range(10):
plt.subplot(2, 5, i + 1)
# Rescale the weights to be between 0 and 255
wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min)
plt.imshow(wimg.astype('uint8'))
plt.axis('off')
plt.title(classes[i])
plt.show()
五、简单的两层神经网络
这里只是一个简单的神经网络的写法,在下次作业会有一个很好很强大的神经网络等我们去构造。
BP可以看这幅图来理解:
# -*- coding:utf-8 -*-
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from past.builtins import xrange
class TwoLayerNet(object):
"""
A two-layer fully-connected neural network. The net has an input dimension of
N, a hidden layer dimension of H, and performs classification over C classes.
We train the network with a softmax loss function and L2 regularization on the
weight matrices. The network uses a ReLU nonlinearity after the first fully
connected layer.
In other words, the network has the following architecture:
input - fully connected layer - ReLU - fully connected layer - softmax
The outputs of the second fully-connected layer are the scores for each class.
"""
def __init__(self, input_size, hidden_size, output_size, std=1e-4):
"""
Initialize the model. Weights are initialized to small random values and
biases are initialized to zero. Weights and biases are stored in the
variable self.params, which is a dictionary with the following keys:
W1: First layer weights; has shape (D, H)
b1: First layer biases; has shape (H,)
W2: Second layer weights; has shape (H, C)
b2: Second layer biases; has shape (C,)
Inputs:
- input_size: The dimension D of the input data.
- hidden_size: The number of neurons H in the hidden layer.
- output_size: The number of classes C.
"""
self.params = {}
self.params['W1'] = std * np.random.randn(input_size, hidden_size)
self.params['b1'] = np.zeros(hidden_size)
self.params['W2'] = std * np.random.randn(hidden_size, output_size)
self.params['b2'] = np.zeros(output_size)
def loss(self, X, y=None, reg=0.0):
"""
Compute the loss and gradients for a two layer fully connected neural
network.
Inputs:
- X: Input data of shape (N, D). Each X[i] is a training sample.
- y: Vector of training labels. y[i] is the label for X[i], and each y[i] is
an integer in the range 0 <= y[i] < C. This parameter is optional; if it
is not passed then we only return scores, and if it is passed then we
instead return the loss and gradients.
- reg: Regularization strength.
Returns:
If y is None, return a matrix scores of shape (N, C) where scores[i, c] is
the score for class c on input X[i].
If y is not None, instead return a tuple of:
- loss: Loss (data loss and regularization loss) for this batch of training
samples.
- grads: Dictionary mapping parameter names to gradients of those parameters
with respect to the loss function; has the same keys as self.params.
"""
# Unpack variables from the params dictionary
W1, b1 = self.params['W1'], self.params['b1']
W2, b2 = self.params['W2'], self.params['b2']
N, D = X.shape
# Compute the forward pass
scores = None
#############################################################################
# TODO: Perform the forward pass, computing the class scores for the input. #
# Store the result in the scores variable, which should be an array of #
# shape (N, C). #
#############################################################################
# evaluate class scores, [N x K]
hidden_layer = np.maximum(0, np.dot(X, W1) + b1) # ReLU activation
scores = np.dot(hidden_layer, W2) + b2
#############################################################################
# END OF YOUR CODE #
#############################################################################
# If the targets are not given then jump out, we're done
if y is None:
return scores
# Compute the loss
loss = None
#############################################################################
# TODO: Finish the forward pass, and compute the loss. This should include #
# both the data loss and L2 regularization for W1 and W2. Store the result #
# in the variable loss, which should be a scalar. Use the Softmax #
# classifier loss. #
#############################################################################
# compute the class probabili。ties
# scores -= np.max(scores, axis = 1)[:, np.newaxis]
exp_scores = np.exp(scores - np.max(scores,axis=1,keepdims=True))
#exp_scores = np.exp(scores)
probs = exp_scores/np.sum(exp_scores,axis=1,keepdims=True)
correct_logprobs = np.log(probs[range(N), y])#find the num corrosd to y
data_loss = -np.sum(correct_logprobs)/N
reg_loss = 0.5*reg*(np.sum(W1*W1)+np.sum(W2*W2))
loss = data_loss + reg_loss
#############################################################################
# END OF YOUR CODE #
#############################################################################
# Backward pass: compute gradients
grads = {}
#############################################################################
# TODO: Compute the backward pass, computing the derivatives of the weights #
# and biases. Store the results in the grads dictionary. For example, #
# grads['W1'] should store the gradient on W1, and be a matrix of same size #
#############################################################################
# compute the gradient on scores
dscores = probs
dscores[range(N), y] -= 1
dscores /= N
# backpropate the gradient to the parameters
# first backprop into parameters W2 and b2
dW2 = np.dot(hidden_layer.T, dscores)
db2 = np.sum(dscores, axis=0, keepdims=False)
# next backprop into hidden layer
dhidden = np.dot(dscores, W2.T) #上一层的损失*该层的权重
# backprop the ReLU non-linearity
dhidden[hidden_layer <= 0] = 0
# finally into W,b
dW1 = np.dot(X.T, dhidden)
db1 = np.sum(dhidden, axis=0, keepdims=False)
# add regularization gradient contribution
dW2 += reg * W2
dW1 += reg * W1
grads['W1'] = dW1
grads['W2'] = dW2
grads['b1'] = db1
grads['b2'] = db2
# print dW1.shape, dW2.shape, db1.shape, db2.shape
#############################################################################
# END OF YOUR CODE #
#############################################################################
return loss, grads
def train(self, X, y, X_val, y_val,
learning_rate=1e-3, learning_rate_decay=0.95,
reg=5e-6, num_iters=100,
batch_size=200, verbose=False):
"""
Train this neural network using stochastic gradient descent.
Inputs:
- X: A numpy array of shape (N, D) giving training data.
- y: A numpy array f shape (N,) giving training labels; y[i] = c means that
X[i] has label c, where 0 <= c < C.
- X_val: A numpy array of shape (N_val, D) giving validation data.
- y_val: A numpy array of shape (N_val,) giving validation labels.
- learning_rate: Scalar giving learning rate for optimization.
- learning_rate_decay: Scalar giving factor used to decay the learning rate
after each epoch.
- reg: Scalar giving regularization strength.
- num_iters: Number of steps to take when optimizing.
- batch_size: Number of training examples to use per step.
- verbose: boolean; if true print progress during optimization.
"""
num_train = X.shape[0]
iterations_per_epoch = max(num_train / batch_size, 1)
# Use SGD to optimize the parameters in self.model
loss_history = []
train_acc_history = []
val_acc_history = []
for it in xrange(num_iters):
X_batch = None
y_batch = None
#########################################################################
# TODO: Create a random minibatch of training data and labels, storing #
# them in X_batch and y_batch respectively. #
#########################################################################
sample_index = np.random.choice(num_train, batch_size, replace=True)
X_batch = X[sample_index, :]
y_batch = y[sample_index]
#########################################################################
# END OF YOUR CODE #
#########################################################################
# Compute loss and gradients using the current minibatch
loss, grads = self.loss(X_batch, y=y_batch, reg=reg)
loss_history.append(loss)
#########################################################################
# TODO: Use the gradients in the grads dictionary to update the #
# parameters of the network (stored in the dictionary self.params) #
# using stochastic gradient descent. You'll need to use the gradients #
# stored in the grads dictionary defined above. #
#########################################################################
dW1 = grads['W1']
dW2 = grads['W2']
db1 = grads['b1']
db2 = grads['b2']
self.params['W1'] -= learning_rate * dW1
self.params['W2'] -= learning_rate * dW2
self.params['b1'] -= learning_rate * db1
self.params['b2'] -= learning_rate * db2
#########################################################################
# END OF YOUR CODE #
#########################################################################
if verbose and it % 100 == 0:
print('iteration %d / %d: loss %f' % (it, num_iters, loss))
# Every epoch, check train and val accuracy and decay learning rate.
if it % iterations_per_epoch == 0:
# Check accuracy
train_acc = (self.predict(X_batch) == y_batch).mean()
val_acc = (self.predict(X_val) == y_val).mean()
train_acc_history.append(train_acc)
val_acc_history.append(val_acc)
# Decay learning rate
learning_rate *= learning_rate_decay
return {
'loss_history': loss_history,
'train_acc_history': train_acc_history,
'val_acc_history': val_acc_history,
}
def predict(self, X):
"""
Use the trained weights of this two-layer network to predict labels for
data points. For each data point we predict scores for each of the C
classes, and assign each data point to the class with the highest score.
Inputs:
- X: A numpy array of shape (N, D) giving N D-dimensional data points to
classify.
Returns:
- y_pred: A numpy array of shape (N,) giving predicted labels for each of
the elements of X. For all i, y_pred[i] = c means that X[i] is predicted
to have class c, where 0 <= c < C.
"""
y_pred = None
###########################################################################
# TODO: Implement this function; it should be VERY simple! #
###########################################################################
hidden_lay = np.maximum(0, np.dot(X, self.params['W1']) + self.params['b1'])
y_pred = np.argmax(np.dot(hidden_lay, self.params['W2']), axis=1)
###########################################################################
# END OF YOUR CODE #
###########################################################################
return y_pred
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from cs231n.classifiers.neural_net import TwoLayerNet
'''return ralatives error'''
def rel_error(x,y):
return np.max(np.abs(x-y)/(np.maximum(1e-8,np.abs(x)+np.abs(y))))
'''
#creat a small net and some toy data to check your implementations
input_size = 4
hidden_size = 10
num_classes = 3
num_inputs = 5
def init_model():
np.random.seed(0)
return TwoLayerNet(input_size, hidden_size, num_classes, std=1e-1)
def init_data():
np.random.seed(1)
x = 10*np.random.randn(num_inputs,input_size)
#y = ([0, 1, 2, 2, 1])
y = np.array([0,1,2,2,1])
return x,y
x,y = init_data()
net = init_model()
scores = net.loss(x)
print (scores)
print('correct scores:')
correct_scores = np.asarray([
[-0.81233741, -1.27654624, -0.70335995],
[-0.17129677, -1.18803311, -0.47310444],
[-0.51590475, -1.01354314, -0.8504215 ],
[-0.15419291, -0.48629638, -0.52901952],
[-0.00618733, -0.12435261, -0.15226949]])
print(correct_scores)
print('Difference between your scores and correct scores:')
print(np.sum(np.abs(scores - correct_scores)))
loss, _ = net.loss(x, y, reg=0.05)
correct_loss = 1.30378789133
print ('loss:%f' % loss)
# should be very small, we get < 1e-12
print('Difference between your loss and correct loss:')
print(np.sum(np.abs(loss - correct_loss)))
from cs231n.gradient_check import eval_numerical_gradient
# Use numeric gradient checking to check your implementation of the backward pass.
# If your implementation is correct, the difference between the numeric and
# analytic gradients should be less than 1e-8 for each of W1, W2, b1, and b2.
loss, grads = net.loss(x, y, reg=0.05)
# these should all be less than 1e-8 or so
for param_name in grads:
f = lambda W: net.loss(x, y, reg=0.05)[0]
param_grad_num = eval_numerical_gradient(f, net.params[param_name], verbose=False)
print('%s max relative error: %e' % (param_name, rel_error(param_grad_num, grads[param_name])))
net = init_model()
stats = net.train(x, y, x, y,
learning_rate=1e-1, reg=5e-6,
num_iters=100, batch_size=4,verbose=False)
print('Final training loss: ', stats['loss_history'][-1])
# plot the loss history
plt.plot(stats['loss_history'])
plt.xlabel('iteration')
plt.ylabel('training loss')
plt.title('Training Loss history')
plt.show()
'''
from cs231n.data_utils import load_CIFAR10
def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000):
"""
Load the CIFAR-10 dataset from disk and perform preprocessing to prepare
it for the two-layer neural net classifier. These are the same steps as
we used for the SVM, but condensed to a single function.
"""
# Load the raw CIFAR-10 data
cifar10_dir = 'data/cifar10'
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
# Subsample the data
mask = list(range(num_training, num_training + num_validation))
X_val = X_train[mask]
y_val = y_train[mask]
mask = list(range(num_training))
X_train = X_train[mask]
y_train = y_train[mask]
mask = list(range(num_test))
X_test = X_test[mask]
y_test = y_test[mask]
# Normalize the data: subtract the mean image
mean_image = np.mean(X_train, axis=0)
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
# Reshape data to rows
X_train = X_train.reshape(num_training, -1)
X_val = X_val.reshape(num_validation, -1)
X_test = X_test.reshape(num_test, -1)
return X_train, y_train, X_val, y_val, X_test, y_test
# Invoke the above function to get our data.
x_train, y_train, x_val, y_val, x_test, y_test = get_CIFAR10_data()
print('Train data shape: ', x_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', x_val.shape)
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', x_test.shape)
print('Test labels shape: ', y_test.shape)
input_size = 32*32*3
hidden_size = 50
num_classes = 10
'''
net = TwoLayerNet(input_size, hidden_size, num_classes)
stats = net.train(x_train, y_train, x_val, y_val,
learning_rate=1e-4, learning_rate_decay=0.95, reg=0.25,
num_iters = 10000, batch_size=200,verbose= True)
# Predict on the validation set
val_acc = (net.predict(x_val) == y_val).mean()
print('Validation accuracy: ', val_acc)
# Plot the loss function and train / validation accuracies
plt.subplot(2, 1, 1)
plt.plot(stats['loss_history'])
plt.title('Loss history')
plt.xlabel('Iteration')
plt.ylabel('Loss')
plt.subplot(2, 1, 2)
plt.plot(stats['train_acc_history'], label='train')
plt.plot(stats['val_acc_history'], label='val')
plt.title('Classification accuracy history')
plt.xlabel('Epoch')
plt.ylabel('Clasification accuracy')
plt.show()
from cs231n.vis_utils import visualize_grid
# Visualize the weights of the network
def show_net_weights(net):
W1 = net.params['W1']
W1 = W1.reshape(32, 32, 3, -1).transpose(3, 0, 1, 2)
plt.imshow(visualize_grid(W1, padding=3).astype('uint8'))
plt.gca().axis('off')
plt.show()
show_net_weights(net)
'''
best_net = None # store the best model into this \
best_acc = 0
hidden_size_choice = [x*100+50 for x in xrange(11)]
reg_choice = [0.1, 0.5, 5, 15, 50, 100, 1000]
learning_rate_choice = [1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 1e-1, 1]
batch_size_choice = [8, 40, 80, 160, 500, 1000]
#hidden_size_choice = [400]
#learning_rate_choice = [3e-3]
#reg_choice = [0.02, 0.05, 0.1]
#batch_size_choice =[500]
num_iters_choice = [5000]
for batch_size_curr in batch_size_choice:
for reg_cur in reg_choice:
for learning_rate_curr in learning_rate_choice:
for hidden_size_curr in hidden_size_choice:
for num_iters_curr in num_iters_choice:
print
print ("current training hidden_size:",hidden_size_curr)
print ("current training learning_rate:",learning_rate_curr)
print ("current training reg:",reg_cur)
print ("current training batch_size:",batch_size_curr)
net = TwoLayerNet(input_size, hidden_size_curr, num_classes)
stats = net.train(x_train, y_train, x_val, y_val,
learning_rate=learning_rate_curr, learning_rate_decay=0.95,reg=reg_cur,
num_iters=num_iters_curr, batch_size=batch_size_curr, verbose=True)
val_acc = (net.predict(x_val) == y_val).mean()
print ("current val_acc:%f" % val_acc)
if val_acc>best_acc:
best_acc = val_acc
best_net = net
best_stats = stats
best_learning_rate = learning_rate_curr
best_reg = reg_cur
best_batch_size = batch_size_curr
print
print ("best_acc:",best_acc)
print ("best hidden_size:",best_net.params['W1'].shape[1])
print ("best learning_rate:",best_learning_rate)
print ("best reg:",best_reg)
print ("best batch_size:",best_batch_size)
print