CS231n+assignment1(作业一)

一、第一个是KNN的代码,这里的trick是计算距离的三种方法,核心的话还是python和machine learning中非常实用的向量化操作,可以大大的提高计算速度。

import numpy as np
 
class KNearestNeighbor(object):#首先是定义一个处理KNN的类
  """ a kNN classifier with L2 distance """
 
  def __init__(self):
    pass
 
  def train(self, X, y):
    """
    Train the classifier. For k-nearest neighbors this is just
    memorizing the training data.
 
    Inputs:
    - X: A numpy array of shape (num_train, D) containing the training data
      consisting of num_train samples each of dimension D.
    - y: A numpy array of shape (N,) containing the training labels, where
         y[i] is the label for X[i].
    """
    self.X_train = X
    self.y_train = y
     
  def predict(self, X, k=1, num_loops=0):
    """
    Predict labels for test data using this classifier.
 
    Inputs:
    - X: A numpy array of shape (num_test, D) containing test data consisting
         of num_test samples each of dimension D.
    - k: The number of nearest neighbors that vote for the predicted labels.
    - num_loops: Determines which implementation to use to compute distances
      between training points and testing points.
 
    Returns:
    - y: A numpy array of shape (num_test,) containing predicted labels for the
      test data, where y[i] is the predicted label for the test point X[i]. 
    """
    if num_loops == 0:
      dists = self.compute_distances_no_loops(X)
    elif num_loops == 1:
      dists = self.compute_distances_one_loop(X)
    elif num_loops == 2:
      dists = self.compute_distances_two_loops(X)
    else:
      raise ValueError('Invalid value %d for num_loops' % num_loops)
 
    return self.predict_labels(dists, k=k)
 
  def compute_distances_two_loops(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using a nested loop over both the training data and the
    test data.
 
    Inputs:
    - X: A numpy array of shape (num_test, D) containing test data.
 
    Returns:
    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
      is the Euclidean distance between the ith test point and the jth training
      point.
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train))
    for i in xrange(num_test):
      for j in xrange(num_train):
        dists[i][j] = np.sqrt(np.sum(np.square(self.X_train[j,:] - X[i,:])))
        #####################################################################
        # TODO:                                                             #
        # Compute the l2 distance between the ith test point and the jth    #
        # training point, and store the result in dists[i, j]. You should   #
        # not use a loop over dimension.                                    #
        #####################################################################
        #####################################################################
        #                       END OF YOUR CODE                            #
        #####################################################################
    return dists
 
  def compute_distances_one_loop(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using a single loop over the test data.
 
    Input / Output: Same as compute_distances_two_loops
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train))
    for i in xrange(num_test):
      #######################################################################
      # TODO:                                                               #
      # Compute the l2 distance between the ith test point and all training #
      # points, and store the result in dists[i, :].                        #
      #######################################################################
      dists[i,:] = np.sqrt(np.sum(np.square(self.X_train-X[i,:]),axis = 1)) 
      #######################################################################
      #                         END OF YOUR CODE                            #
      #######################################################################
    return dists
 
  def compute_distances_no_loops(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using no explicit loops.
 
    Input / Output: Same as compute_distances_two_loops
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train))
    #########################################################################
    # TODO:                                                                 #
    # Compute the l2 distance between all test points and all training      #
    # points without using any explicit loops, and store the result in      #
    # dists.                                                                #
    #                                                                       #
    # You should implement this function using only basic array operations; #
    # in particular you should not use functions from scipy.                #
    #                                                                       #
    # HINT: Try to formulate the l2 distance using matrix multiplication    #
    #       and two broadcast sums.                                         #
    #########################################################################
    dists = np.multiply(np.dot(X,self.X_train.T),-2) 
    sq1 = np.sum(np.square(X),axis=1,keepdims = True) 
    sq2 = np.sum(np.square(self.X_train),axis=1) 
    dists = np.add(dists,sq1) 
    dists = np.add(dists,sq2) 
    dists = np.sqrt(dists)
    #########################################################################
    #                         END OF YOUR CODE                              #
    #########################################################################
    return dists
 
  def predict_labels(self, dists, k=1):
    """
    Given a matrix of distances between test points and training points,
    predict a label for each test point.
 
    Inputs:
    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
      gives the distance betwen the ith test point and the jth training point.
 
    Returns:
    - y: A numpy array of shape (num_test,) containing predicted labels for the
      test data, where y[i] is the predicted label for the test point X[i]. 
    """
    num_test = dists.shape[0]
    y_pred = np.zeros(num_test)
    for i in xrange(num_test):
      # A list of length k storing the labels of the k nearest neighbors to
      # the ith test point.
      closest_y = [] 
      ######################################################################### 
      # TODO:                                                                 # 
      # Use the distance matrix to find the k nearest neighbors of the ith    # 
      # training point, and use self.y_train to find the labels of these      # 
      # neighbors. Store these labels in closest_y.                           # 
      # Hint: Look up the function numpy.argsort.                             # 
      ######################################################################### 
      closest_y = self.y_train[np.argsort(dists[i,:])[:k]] 
    
      ######################################################################### 
      # TODO:                                                                 # 
      # Now that you have found the labels of the k nearest neighbors, you    # 
      # need to find the most common label in the list closest_y of labels.   # 
      # Store this label in y_pred[i]. Break ties by choosing the smaller     # 
      # label.                                                                # 
      ######################################################################### 
      y_pred[i] = np.argmax(np.bincount(closest_y))        #########################################################################
      #                           END OF YOUR CODE                            #
      #########################################################################
 
    return y_pred

测试和交叉验证代码:

#coding:utf-8
'''
Created on 2017

@author: 
'''
import random
import numpy as np
from assignment1.data_utils import load_CIFAR10
from  assignment1.classifiers.k_nearest_neighbor import KNearestNeighbor
import matplotlib.pyplot as plt

# This is a bit of magic to make matplotlib figures appear inline in the notebook
# rather than in a new window.
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

X_train, y_train, X_test, y_test = load_CIFAR10('../datasets')

# As a sanity check, we print out the size of the training and test data.
print('Training data shape: ', X_train.shape)
print('Training labels shape: ', y_train.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)

# 从数据集中展示一部分数据
# 每个类别展示若干张对应图片
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
num_classes = len(classes)
samples_per_class = 7
for y, cls in enumerate(classes):
    idxs = np.flatnonzero(y_train == y)
    idxs = np.random.choice(idxs, samples_per_class, replace=False)
    for i, idx in enumerate(idxs):
        plt_idx = i * num_classes + y + 1
        plt.subplot(samples_per_class, num_classes, plt_idx)
        plt.imshow(X_train[idx].astype('uint8'))
        plt.axis('off')
        if i == 0:
            plt.title(cls)
plt.show()

# 截取部分样本数据,以提高本作业的执行效率
num_training = 5000
mask = range(num_training)
X_train = X_train[mask]
y_train = y_train[mask]

num_test = 500
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]

# reshape训练和测试数据,转换为行的形式
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))

print(X_train.shape)
print(X_test.shape)

classifier = KNearestNeighbor()
classifier.train(X_train, y_train)

dists = classifier.compute_distances_two_loops(X_test)
print(dists.shape)

plt.imshow(dists, interpolation='none')
plt.show()

# Now implement the function predict_labels and run the code below:
# k=1时
y_test_pred = classifier.predict_labels(dists, k=1)

# Compute and print the fraction of correctly predicted examples
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy))

# k=5时
y_test_pred = classifier.predict_labels(dists, k=5)
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy))

####测试三种距离计算法的效率

dists_one = classifier.compute_distances_one_loop(X_test)

difference = np.linalg.norm(dists - dists_one, ord='fro')
print('Difference was: %f' % (difference, ))
if difference < 0.001:
  print('Good! The distance matrices are the same')
else:
  print('Uh-oh! The distance matrices are different')

dists_two = classifier.compute_distances_no_loops(X_test)
difference = np.linalg.norm(dists - dists_two, ord='fro')
print('Difference was: %f' % (difference, ))
if difference < 0.001:
  print('Good! The distance matrices are the same')
else:
  print('Uh-oh! The distance matrices are different')


def time_function(f, *args):
  """
  Call a function f with args and return the time (in seconds) that it took to execute.
  """
  import time
  tic = time.time()
  f(*args)
  toc = time.time()
  return toc - tic

two_loop_time = time_function(classifier.compute_distances_two_loops, X_test)
print('Two loop version took %f seconds' % two_loop_time)

one_loop_time = time_function(classifier.compute_distances_one_loop, X_test)
print('One loop version took %f seconds' % one_loop_time)

no_loop_time = time_function(classifier.compute_distances_no_loops, X_test)
print('No loop version took %f seconds' % no_loop_time)

# 交叉验证
num_folds = 5
k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]

X_train_folds = []
y_train_folds = []
################################################################################
# TODO:                                                                        #
# Split up the training data into folds. After splitting, X_train_folds and    #
# y_train_folds should each be lists of length num_folds, where                #
# y_train_folds[i] is the label vector for the points in X_train_folds[i].     #
# Hint: Look up the numpy array_split function.                                #
################################################################################
#数据划分
X_train_folds = np.array_split(X_train, num_folds);
y_train_folds = np.array_split(y_train, num_folds)
################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

# A dictionary holding the accuracies for different values of k that we find
# when running cross-validation. After running cross-validation,
# k_to_accuracies[k] should be a list of length num_folds giving the different
# accuracy values that we found when using that value of k.

k_to_accuracies = {}

################################################################################
# TODO:                                                                        #
# Perform k-fold cross validation to find the best value of k. For each        #
# possible value of k, run the k-nearest-neighbor algorithm num_folds times,   #
# where in each case you use all but one of the folds as training data and the #
# last fold as a validation set. Store the accuracies for all fold and all     #
# values of k in the k_to_accuracies dictionary.                               #
################################################################################
for k in k_choices:
    k_to_accuracies[k] = []

for k in k_choices:#find the best k-value
    for i in range(num_folds):
        X_train_cv = np.vstack(X_train_folds[:i]+X_train_folds[i+1:])
        X_test_cv = X_train_folds[i]

        y_train_cv = np.hstack(y_train_folds[:i]+y_train_folds[i+1:])  #size:4000
        y_test_cv = y_train_folds[i]

        classifier.train(X_train_cv, y_train_cv)
        dists_cv = classifier.compute_distances_no_loops(X_test_cv)

        y_test_pred = classifier.predict_labels(dists_cv, k)
        num_correct = np.sum(y_test_pred == y_test_cv)
        accuracy = float(num_correct) / y_test_cv.shape[0]

        k_to_accuracies[k].append(accuracy)
################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

# Print out the computed accuracies
for k in sorted(k_to_accuracies):
    for accuracy in k_to_accuracies[k]:
        print('k = %d, accuracy = %f' % (k, accuracy))



# plot the raw observations
for k in k_choices:
  accuracies = k_to_accuracies[k]
  plt.scatter([k] * len(accuracies), accuracies)

# plot the trend line with error bars that correspond to standard deviation
accuracies_mean = np.array([np.mean(v) for k,v in sorted(k_to_accuracies.items())])
accuracies_std = np.array([np.std(v) for k,v in sorted(k_to_accuracies.items())])
plt.errorbar(k_choices, accuracies_mean, yerr=accuracies_std)
plt.title('Cross-validation on k')
plt.xlabel('k')
plt.ylabel('Cross-validation accuracy')
plt.show()


testKNN.py
import numpy as np
import random
import os
import sys
sys.path.append('cs231n.classifiers')
from cs231n.classifiers.k_nearest_neighbor import KNearestNeighbor
from six.moves import cPickle as pickle
from scipy.misc import imread
from cs231n.data_utils import load_CIFAR10

xtr,ytr,xte,yte=load_CIFAR10('data/cifar10')

num_training = 5000
mask = range(num_training)
X_train = xtr[mask]
y_train = ytr[mask]

num_test = 500
mask = range(num_test)
X_test = xte[mask]
y_test = yte[mask]
# Reshape the image data into rows
X_train = X_train.reshape(X_train.shape[0], 32*32*3)
X_test = X_test.reshape(X_test.shape[0],32*32*3)
print X_train.shape, X_test.shape

num_folds = 5
k_choices = [1, 5, 10, 15, 20, 50, 100]

X_train_folds = []
y_train_folds = []

X_train_folds = np.array_split(X_train,num_folds,axis=0)
y_train_folds = np.array_split(y_train,num_folds,axis=0)

k_to_accuracies = {}
nn = KNearestNeighbor()
for k in k_choices:
    k_to_accuracies[k] = []
    for j in xrange(num_folds):
        X_tr = np.array(X_train_folds[0:j]+X_train_folds[(j+1):])
        X_tr = np.reshape(X_tr,(X_train.shape[0]*(num_folds-1)/num_folds,-1))

        y_tr = np.array(y_train_folds[0:j]+y_train_folds[(j+1):])
        y_tr = np.reshape(y_tr,(X_train.shape[0]*(num_folds-1)/num_folds))

        X_te = np.array(X_train_folds[j])
        X_te = np.reshape( X_te, (X_train.shape[0]/num_folds,-1))

        y_te = np.array(y_train_folds[j])
        y_te = np.reshape(y_te,(y_train.shape[0]/num_folds))

        nn.train(X_tr,y_tr)
        yte_pred = nn.predict(X_te,k,1)
        num_correct = np.sum(y_te==yte_pred)
        num_test1 = np.shape(X_te)[0]
        accuracy = float(num_correct)/num_test1
        k_to_accuracies[k].append(accuracy)


for k in sorted(k_to_accuracies):
    for accuracy in k_to_accuracies[k]:
        print 'k = %d, accuracy = %f' % (k, accuracy)

accuracies_mean = np.array([np.mean(v) for k,v in sorted(k_to_accuracies.items())])
accuracies_std = np.array([np.std(v) for k,v in sorted(k_to_accuracies.items())])
plt.errorbar(k_choices, accuracies_mean, yerr=accuracies_std)
plt.title('Cross-validation on k')
plt.xlabel('k')
plt.ylabel('Cross-validation accuracy')
plt.show()
plt.savefig("k.png")
plt.clf()




二、softmax

同样是需要完成naive和vector的两种操作来比较速度。

import numpy as np

def softmax_loss_naive(W, X, y, reg):    

    # Initialize the loss and gradient to zero.
    loss = 0.0
    dW = np.zeros_like(W)    # 得到一个和W同样shape的矩阵
    dW_each = np.zeros_like(W)
    num_train, dim = X.shape
    num_class = W.shape[1]
    f = X.dot(W)    # N by C
    # Considering the Numeric Stability
    f_max = np.reshape(np.max(f, axis=1), (num_train, 1))   # 找到最大值然后减去,这样是为了防止后面的操作会出现数值上的一些偏差
    prob = np.exp(f - f_max) / np.sum(np.exp(f - f_max), axis=1, keepdims=True) # N by C
    y_trueClass = np.zeros_like(prob)
    y_trueClass[np.arange(num_train), y] = 1.0
    for i in xrange(num_train):
        for j in xrange(num_class):    
            loss += -(y_trueClass[i, j] * np.log(prob[i, j]))    # 损失函数的公式L = -(1/N)∑i∑j1(k=yi)log(exp(fk)/∑j exp(fj)) + λR(W)
            dW_each[:, j] = -(y_trueClass[i, j] - prob[i, j]) * X[i, :]#梯度的公式 ∇Wk L = -(1/N)∑i xiT(pi,m-Pm) + 2λWk, where Pk = exp(fk)/∑j exp(fj
        dW += dW_each                  #这是把每个类的放在了一起
    loss /= num_train
    loss += 0.5 * reg * np.sum(W * W)  # 加上正则
    dW /= num_traindW += reg * W

    return loss, dW

def softmax_loss_vectorized(W, X, y, reg):    
    """    
    Softmax loss function, vectorized version.    

    Inputs and outputs are the same as softmax_loss_naive.    
    """    
    # Initialize the loss and gradient to zero.    
    loss = 0.0    
    dW = np.zeros_like(W)    # D by C    
    num_train, dim = X.shape

    f = X.dot(W)    # N by C
    # Considering the Numeric Stability
    f_max = np.reshape(np.max(f, axis=1), (num_train, 1))   # N by 1
    prob = np.exp(f - f_max) / np.sum(np.exp(f - f_max), axis=1), keepdims=True)
    y_trueClass = np.zeros_like(prob)
    y_trueClass[range(num_train), y] = 1.0    # N by C
    loss += -np.sum(y_trueClass * np.log(prob)) / num_train + 0.5 * reg * np.sum(W * W)#向量化直接操作即可
    dW += -np.dot(X.T, y_trueClass - prob) / num_train + reg * W

    return loss, dW


三、SVM


import numpy as np
def svm_loss_naive(W, X, y, reg):
    """
    Inputs:
    - W: A numpy array of shape (D, C) containing weights.
    - X: A numpy array of shape (N, D) containing a minibatch of data.
    - y: A numpy array of shape (N,) containing training labels; y[i] = c means 
         that X[i] has label c, where 0 <= c < C.
    - reg: (float) regularization strength

    Returns a tuple of:
    - loss as single float
    - gradient with respect to weights W; an array of same shape as W
    """
    dW = np.zeros(W.shape)   # initialize the gradient as zero
    # compute the loss and the gradient
    num_classes = W.shape[1]
    num_train = X.shape[0]
    loss = 0.0
    for i in xrange(num_train):    
        scores = X[i].dot(W)    
        correct_class_score = scores[y[i]]
        for j in xrange(num_classes):
            if j == y[i]:    #根据公式,正确的那个不用算
                continue
            margin = scores[j] - correct_class_score + 1   # note delta = 1
            if margin > 0:
                loss += margin
                dW[:, y[i]] += -X[i, :]     #  根据公式:∇Wyi Li = - xiT(∑j≠yi1(xiWj - xiWyi +1>0)) + 2λWyi 
                dW[:, j] += X[i, :]         #  根据公式: ∇Wj Li = xiT 1(xiWj - xiWyi +1>0) + 2λWj , (j≠yi)
    # Right now the loss is a sum over all training examples, but we want it
    # to be an average instead so we divide by num_train.
    loss /= num_train
    dW /= num_train
    # Add regularization to the loss.
    loss += 0.5 * reg * np.sum(W * W)
    dW += reg * W
    return loss, dW

def svm_loss_vectorized(W, X, y, reg):
    """
    Structured SVM loss function, vectorized implementation.Inputs and outputs 
    are the same as svm_loss_naive.
    """
    loss = 0.0
    dW = np.zeros(W.shape)   # initialize the gradient as zero
    scores = X.dot(W)        # N by C
    num_train = X.shape[0]
    num_classes = W.shape[1]
    scores_correct = scores[np.arange(num_train), y]   # 1 by N
    scores_correct = np.reshape(scores_correct, (num_train, 1))  # N by 1
    margins = scores - scores_correct + 1.0     # N by C
    margins[np.arange(num_train), y] = 0.0
    margins[margins <= 0] = 0.0
    loss += np.sum(margins) / num_train
    loss += 0.5 * reg * np.sum(W * W)
    # compute the gradient
    margins[margins > 0] = 1.0
    row_sum = np.sum(margins, axis=1)                  # 1 by N
    margins[np.arange(num_train), y] = -row_sum        
    dW += np.dot(X.T, margins)/num_train + reg * W     # D by C

    return loss, dW

SVM_test.py

#-*-coding:utf-8-*-


import random
import numpy as np
import matplotlib.pyplot as plt
from cs231n.data_utils import load_CIFAR10


# Load the raw CIFAR-10 data.
cifar10_dir = 'data/cifar10'
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

'''
# As a sanity check, we print out the size of the training and test data.
print('Training data shape: ', X_train.shape)
print('Training labels shape: ', y_train.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
'''



'''
# Visualize some examples from the dataset.
# We show a few examples of training images from each class.
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
num_classes = len(classes)
samples_per_class = 7

for y, cls in enumerate(classes):
    idxs = np.flatnonzero(y_train == y)
    idxs = np.random.choice(idxs, samples_per_class, replace=False)
    for i, idx in enumerate(idxs):
        plt_idx = i * num_classes + y + 1
        plt.subplot(samples_per_class, num_classes, plt_idx)
        plt.imshow(X_train[idx].astype('uint8'))
        plt.axis('off')
        if i == 0:
            plt.title(cls)
plt.show()
'''

# Split the data into train, val, and test sets. In addition we will
# create a small development set as a subset of the training data;
# we can use this for development so our code runs faster.
num_training = 49000
num_validation = 1000
num_test = 1000
num_dev = 500

# Our validation set will be num_validation points from the original training set.
mask = range(num_training, num_training + num_validation)
X_val = X_train[mask]
y_val = y_train[mask]

# Our training set will be the first num_train points from the original training set.
mask = range(num_training)
X_train = X_train[mask]
y_train = y_train[mask]

# We will also make a development set, which is a small subset of the training set.
mask = np.random.choice(num_training, num_dev, replace=False)
X_dev = X_train[mask]
y_dev = y_train[mask]

# We use the first num_test points of the original test set as our test set.
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]

'''
print('Train data shape: ', X_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', X_val.shape)
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
'''




# Preprocessing: reshape the image data into rows
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_val = np.reshape(X_val, (X_val.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))

'''
# As a sanity check, print out the shapes of the data
print('Training data shape: ', X_train.shape)
print('Validation data shape: ', X_val.shape)
print('Test data shape: ', X_test.shape)
print('dev data shape: ', X_dev.shape)
'''



# Preprocessing: subtract the mean image
# first: compute the image mean based on the training data
mean_image = np.mean(X_train, axis=0)

'''
print(mean_image[:10]) # print a few of the elements
plt.figure(figsize=(4,4))
plt.imshow(mean_image.reshape((32,32,3)).astype('uint8')) # visualize the mean image
plt.show()
'''


# second: subtract the mean image from train and test data
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
X_dev -= mean_image


# third: append the bias dimension of ones (i.e. bias trick) so that our SVM
# only has to worry about optimizing a single weight matrix W.
X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
#print(X_train.shape, X_val.shape, X_test.shape, X_dev.shape)


# Evaluate the naive implementation of the loss we provided for you:
from cs231n.classifiers.linear_svm import svm_loss_naive
import time

# generate a random SVM weight matrix of small numbers
W = np.random.randn(3073, 10) * 0.0001

loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.000005)
print('loss: %f' % (loss, )) #输出:loss: 9.548658

# Compute the loss and its gradient at W.
loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.0)



'''
# Numerically compute the gradient along several randomly chosen dimensions, and
# compare them with your analytically computed gradient. The numbers should match
# almost exactly along all dimensions.
from cs231n.gradient_check import grad_check_sparse
f = lambda w: svm_loss_naive(w, X_dev, y_dev, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, grad)

# do the gradient check once again with regularization turned on
# you didn't forget the regularization gradient did you?
loss, grad = svm_loss_naive(W, X_dev, y_dev, 5e1)
f = lambda w: svm_loss_naive(w, X_dev, y_dev, 5e1)[0]
grad_numerical = grad_check_sparse(f, W, grad)
'''


'''
# Next implement the function svm_loss_vectorized; for now only compute the loss;
# we will implement the gradient in a moment.
tic = time.time()
loss_naive, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Naive loss: %e computed in %fs' % (loss_naive, toc - tic))

from cs231n.classifiers.linear_svm import svm_loss_vectorized
tic = time.time()
loss_vectorized, _ = svm_loss_vectorized(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic))

# The losses should match but your vectorized implementation should be much faster.
print('difference: %f' % (loss_naive - loss_vectorized))
'''



'''
# Complete the implementation of svm_loss_vectorized, and compute the gradient
# of the loss function in a vectorized way.

# The naive implementation and the vectorized implementation should match, but
# the vectorized version should still be much faster.
tic = time.time()
loss_naive, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Naive loss and gradient: computed in %fs' % (toc - tic))

tic = time.time()
#_, grad_vectorized = svm_loss_vectorized(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Vectorized loss and gradient: computed in %fs' % (toc - tic))

# The loss is a single number, so it is easy to compare the values computed
# by the two implementations. The gradient on the other hand is a matrix, so
# we use the Frobenius norm to compare them.
#difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
#print('difference: %f' % difference)
'''




# In the file linear_classifier.py, implement SGD in the function
# LinearClassifier.train() and then run it with the code below.
from cs231n.classifiers.linear_classifier import LinearSVM
svm = LinearSVM()
tic = time.time()
loss_hist = svm.train(X_train, y_train, learning_rate=1e-7, reg=2.5e4, num_iters=1500, verbose=True)
toc = time.time()
print('That took %fs' % (toc - tic))


'''
# A useful debugging strategy is to plot the loss as a function of
# iteration number:
plt.plot(loss_hist)
plt.xlabel('Iteration number')
plt.ylabel('Loss value')
plt.show()
'''

# Write the LinearSVM.predict function and evaluate the performance on both the
# training and validation set
y_train_pred = svm.predict(X_train)
print('training accuracy: %f' % (np.mean(y_train == y_train_pred), ))
y_val_pred = svm.predict(X_val)
print('validation accuracy: %f' % (np.mean(y_val == y_val_pred), ))


# Use the validation set to tune hyperparameters (regularization strength and
# learning rate). You should experiment with different ranges for the learning
# rates and regularization strengths; if you are careful you should be able to
# get a classification accuracy of about 0.4 on the validation set.
learning_rates = [1e-7, 5e-5]
regularization_strengths = [2.5e4, 5e4]

# results is dictionary mapping tuples of the form
# (learning_rate, regularization_strength) to tuples of the form
# (training_accuracy, validation_accuracy). The accuracy is simply the fraction
# of data points that are correctly classified.
results = {}
best_val = -1   # The highest validation accuracy that we have seen so far.
best_svm = None # The LinearSVM object that achieved the highest validation rate.




iters= 1000
for lr in learning_rates:
    for rs in regularization_strengths:
        svm = LinearSVM()
        svm.train(X_train, y_train, learning_rate=lr, reg=rs, num_iters=iters)
        y_train_pred = svm.predict(X_train)
        acc_train = np.mean(y_train == y_train_pred)
        y_val_pred = svm.predict(X_val)
        acc_val = np.mean(y_val == y_val_pred)
        results[(lr, rs)] = (acc_train, acc_val)
        if best_val < acc_val:
            best_val = acc_val
            best_svm = svm
# Print out results.
for lr, reg in sorted(results):
    train_accuracy, val_accuracy = results[(lr, reg)]
    print 'lr %e reg %e train accuracy: %f val accuracy: %f' % (
                lr, reg, train_accuracy, val_accuracy)

print 'best validation accuracy achieved during cross-validation: %f' % best_val




'''
# Visualize the cross-validation results
import math
x_scatter = [math.log10(x[0]) for x in results]
y_scatter = [math.log10(x[1]) for x in results]

# plot training accuracy
marker_size = 100
colors = [results[x][0] for x in results]
plt.subplot(2, 1, 1)
plt.scatter(x_scatter, y_scatter, marker_size, c=colors)
plt.colorbar()
plt.xlabel('log learning rate')
plt.ylabel('log regularization strength')
plt.title('CIFAR-10 training accuracy')

# plot validation accuracy
colors = [results[x][1] for x in results] # default size of markers is 20
plt.subplot(2, 1, 2)
plt.scatter(x_scatter, y_scatter, marker_size, c=colors)
plt.colorbar()
plt.xlabel('log learning rate')
plt.ylabel('log regularization strength')
plt.title('CIFAR-10 validation accuracy')
plt.show()
'''


# Evaluate the best svm on test set
y_test_pred = best_svm.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print('linear SVM on raw pixels final test set accuracy: %f' % test_accuracy)

# Visualize the learned weights for each class.
# Depending on your choice of learning rate and regularization strength, these may
# or may not be nice to look at.
w = best_svm.W[:-1, :]  # strip out the bias
w = w.reshape(32, 32, 3, 10)
w_min, w_max = np.min(w), np.max(w)
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for i in range(10):
    plt.subplot(2, 5, i + 1)

    # Rescale the weights to be between 0 and 255
    wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min)
    plt.imshow(wimg.astype('uint8'))
    plt.axis('off')
    plt.title(classes[i])

plt.show()




四、linear_classifier

  从编程思路上来看,上面三个是不同的策略,确切的说是线性分类器的集中方法,所以我们用一个LinearClassifier类来调用他们。

from linear_svm import *
from softmax import *

class LinearClassifier(object):    

    def __init__(self):        
        self.W = None    

    def train(self, X, y, learning_rate=1e-3, reg=1e-5, num_iters=100, 
                          batch_size=200, verbose=True):  #注意这里传递的参数设置
        """        
        Train this linear classifier using stochastic gradient descent.   

        Inputs:       
        - X: A numpy array of shape (N, D) containing training data; there are N          
             training samples each of dimension D.        
        - y: A numpy array of shape (N,) containing training labels; y[i] = c          
             means that X[i] has label 0 <= c < C for C classes.        
        - learning_rate: (float) learning rate for optimization.        
        - reg: (float) regularization strength.        
        - num_iters: (integer) number of steps to take when optimizing
        - batch_size: (integer) number of training examples to use at each step.        
        - verbose: (boolean) If true, print progress during optimization.

        Outputs:         
        A list containing the value of the loss function at each training iteration.
        """
        num_train, dim = X.shape
        # assume y takes values 0...K-1 where K is number of classes
        num_classes = np.max(y) + 1  
        if self.W is None:
            # lazily initialize W
            self.W = 0.001 * np.random.randn(dim, num_classes)   # 初始化W

        # Run stochastic gradient descent(Mini-Batch) to optimize W
        loss_history = []
        for it in xrange(num_iters):  #每次随机取batch的数据来进行梯度下降
            X_batch = None
            y_batch = None
            # Sampling with replacement is faster than sampling without replacement.
            sample_index = np.random.choice(num_train, batch_size, replace=False)
            X_batch = X[sample_index, :]   # batch_size by D
            y_batch = y[sample_index]      # 1 by batch_size
            # evaluate loss and gradient
            loss, grad = self.loss(X_batch, y_batch, reg)
            loss_history.append(loss)

            # perform parameter update
            self.W += -learning_rate * grad
            if verbose and it % 100 == 0:
                print 'Iteration %d / %d: loss %f' % (it, num_iters, loss)

        return loss_history

    def predict(self, X):    
        """    
        Use the trained weights of this linear classifier to predict labels for   
        data points.    

        Inputs:    
        - X: D x N array of training data. Each column is a D-dimensional point.    

        Returns:    
        - y_pred: Predicted labels for the data in X. y_pred is a 1-dimensional     
                  array of length N, and each element is an integer giving the 
                  predicted class.  
        """
        y_pred = np.zeros(X.shape[1])    # 1 by N
        X=X.T
        y_pred = np.argmax(X.dot(self.W), axis=0) #预测直接找到最后y最大的那个值

        return y_pred

    def loss(self, X_batch, y_batch, reg):   
        """    
        Compute the loss function and its derivative.    
        Subclasses will override this.    

        Inputs:    
        - X_batch: A numpy array of shape (N, D) containing a minibatch of N 
                   data points; each point has dimension D.    
        - y_batch: A numpy array of shape (N,) containing labels for the minibatch.
        - reg: (float) regularization strength.   

        Returns: A tuple containing:    
        - loss as a single float    
        - gradient with respect to self.W; an array of the same shape as W   
        """    
        pass

class LinearSVM(LinearClassifier):   
    """ 
    A subclass that uses the Multiclass SVM loss function 
    """    
    def loss(self, X_batch, y_batch, reg):        
        return svm_loss_vectorized(self.W, X_batch, y_batch, reg)

class Softmax(LinearClassifier):   
    """ 
    A subclass that uses the Softmax + Cross-entropy loss function 
    """    
    def loss(self, X_batch, y_batch, reg):        
        return softmax_loss_vectorized(self.W, X_batch, y_batch, reg)

Softmax_test.py

#-*-coding:utf-8-*-
from __future__ import print_function
import random
import numpy as np
from cs231n.data_utils import load_CIFAR10
import matplotlib.pyplot as plt




#matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

cifar10_dir = 'data/cifar10'
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

num_training=49000
num_validation=1000
num_test=1000
num_dev=500

mask = list(range(num_training,num_training+num_validation))
x_val = X_train[mask]
y_val = y_train[mask]

mask = list(range(num_training))
x_train = X_train[mask]
y_train = y_train[mask]

mask = list(range(num_test))
x_test = X_test[mask]
y_test = y_test[mask]

mask = np.random.choice(num_training, num_dev, replace=False)
x_dev = X_train[mask]
y_dev = y_train[mask]


#reshape the image date into rows
x_train = np.reshape(x_train,(x_train.shape[0],-1))
x_test = np.reshape(x_test,(x_test.shape[0],-1))
x_dev = np.reshape(x_dev,(x_dev.shape[0],-1))
x_val = np.reshape(x_val,(x_val.shape[0],-1))

# Normalize the data: subtract the mean image
mean_image = np.mean(x_train,axis=0)
x_train -= mean_image
x_val -= mean_image
x_dev -= mean_image
x_test -= mean_image

# add bias dimension and transform into columns
x_train = np.hstack([x_train,np.ones((x_train.shape[0],1))])
x_test = np.hstack([x_test,np.ones((x_test.shape[0],1))])
x_dev = np.hstack([x_dev,np.ones((x_dev.shape[0],1))])
x_val = np.hstack([x_val,np.ones((x_val.shape[0],1))])



from cs231n.classifiers.softmax import softmax_loss_naive
import time
# Generate a random softmax weight matrix and use it to compute the loss.
w = np.random.randn(x_train.shape[1],10)*0.0001
loss, grad = softmax_loss_naive(w, x_dev, y_dev, 0.0)

'''
# As we did for the SVM, use numeric gradient checking as a debugging tool.
# The numeric gradient should be close to the analytic gradient.
from cs231n.gradient_check import grad_check_sparse
f = lambda w: softmax_loss_naive(w, x_dev, y_dev, 0.0)[0]
grad_numerical = grad_check_sparse(f, w, grad, 10)

# similar to SVM case, do another gradient check with regularization
loss, grad = softmax_loss_naive(w, x_dev, y_dev, 5e1)
f = lambda w: softmax_loss_naive(w, x_dev, y_dev, 5e1)[0]
grad_numerical = grad_check_sparse(f, w, grad, 10)
'''

'''
# Now that we have a naive implementation of the softmax loss function and its gradient,
# implement a vectorized version in softmax_loss_vectorized.
# The two versions should compute the same results, but the vectorized version should be
# much faster.
tic = time.time()
loss_naive, grad_naive = softmax_loss_naive(w, x_dev, y_dev, 0.000005)
toc = time.time()
print('naive loss: %e computed in %fs' % (loss_naive, toc - tic))

from cs231n.classifiers.softmax import softmax_loss_vectorized
tic = time.time()
loss_vectorized, grad_vectorized = softmax_loss_vectorized(w, x_dev, y_dev, 0.000005)
toc = time.time()
print('vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic))

# As we did for the SVM, we use the Frobenius norm to compare the two versions
# of the gradient.
grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
print('Loss difference: %f' % np.abs(loss_naive - loss_vectorized))
print('Gradient difference: %f' % grad_difference)
'''

# Use the validation set to tune hyperparameters (regularization strength and
# learning rate). You should experiment with different ranges for the learning
# rates and regularization strengths; if you are careful you should be able to
# get a classification accuracy of over 0.35 on the validation set.
from cs231n.classifiers import Softmax

results = {}
best_val = -1
best_softmax = None
learning_rates = [1e-7, 5e-7]
regularization_strengths = [2.5e4, 5e4]

################################################################################
# TODO:                                                                        #
# Use the validation set to set the learning rate and regularization strength. #
# This should be identical to the validation that you did for the SVM; save    #
# the best trained softmax classifer in best_softmax.                          #
################################################################################
iters= 1000
for lr in learning_rates:
    for rs in regularization_strengths:
        softmax = Softmax()
        softmax.train(x_train, y_train, learning_rate=lr, reg=rs, num_iters=iters)
        y_train_pred = softmax.predict(x_train)
        acc_train = np.mean(y_train == y_train_pred)
        y_val_pred = softmax.predict(x_val)
        acc_val = np.mean(y_val == y_val_pred)
        results[(lr, rs)] = (acc_train, acc_val)
        if best_val < acc_val:
            best_val = acc_val
            best_softmax = softmax
################################################################################
#                              END OF YOUR CODE                                #
################################################################################

# Print out results.
for lr, reg in sorted(results):
    train_accuracy, val_accuracy = results[(lr, reg)]
    print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
        lr, reg, train_accuracy, val_accuracy))

print('best validation accuracy achieved during cross-validation: %f' % best_val)


# evaluate on test set
# Evaluate the best softmax on test set
y_test_pred = best_softmax.predict(x_test)
test_accuracy = np.mean(y_test == y_test_pred)
print('softmax on raw pixels final test set accuracy: %f' % (test_accuracy, ))

# Visualize the learned weights for each class
w = best_softmax.W[:-1, :]  # strip out the bias
w = w.reshape(32, 32, 3, 10)

w_min, w_max = np.min(w), np.max(w)

classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for i in range(10):
    plt.subplot(2, 5, i + 1)

    # Rescale the weights to be between 0 and 255
    wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min)
    plt.imshow(wimg.astype('uint8'))
    plt.axis('off')
    plt.title(classes[i])

plt.show()



五、简单的两层神经网络

这里只是一个简单的神经网络的写法,在下次作业会有一个很好很强大的神经网络等我们去构造。

BP可以看这幅图来理解:

CS231n+assignment1(作业一)_第1张图片

# -*- coding:utf-8 -*-
from __future__ import print_function

import numpy as np
import matplotlib.pyplot as plt
from past.builtins import xrange

class TwoLayerNet(object):
  """
  A two-layer fully-connected neural network. The net has an input dimension of
  N, a hidden layer dimension of H, and performs classification over C classes.
  We train the network with a softmax loss function and L2 regularization on the
  weight matrices. The network uses a ReLU nonlinearity after the first fully
  connected layer.

  In other words, the network has the following architecture:

  input - fully connected layer - ReLU - fully connected layer - softmax

  The outputs of the second fully-connected layer are the scores for each class.
  """

  def __init__(self, input_size, hidden_size, output_size, std=1e-4):
    """
    Initialize the model. Weights are initialized to small random values and
    biases are initialized to zero. Weights and biases are stored in the
    variable self.params, which is a dictionary with the following keys:

    W1: First layer weights; has shape (D, H)
    b1: First layer biases; has shape (H,)
    W2: Second layer weights; has shape (H, C)
    b2: Second layer biases; has shape (C,)

    Inputs:
    - input_size: The dimension D of the input data.
    - hidden_size: The number of neurons H in the hidden layer.
    - output_size: The number of classes C.
    """
    self.params = {}
    self.params['W1'] = std * np.random.randn(input_size, hidden_size)
    self.params['b1'] = np.zeros(hidden_size)
    self.params['W2'] = std * np.random.randn(hidden_size, output_size)
    self.params['b2'] = np.zeros(output_size)

  def loss(self, X, y=None, reg=0.0):
    """
    Compute the loss and gradients for a two layer fully connected neural
    network.

    Inputs:
    - X: Input data of shape (N, D). Each X[i] is a training sample.
    - y: Vector of training labels. y[i] is the label for X[i], and each y[i] is
      an integer in the range 0 <= y[i] < C. This parameter is optional; if it
      is not passed then we only return scores, and if it is passed then we
      instead return the loss and gradients.
    - reg: Regularization strength.

    Returns:
    If y is None, return a matrix scores of shape (N, C) where scores[i, c] is
    the score for class c on input X[i].

    If y is not None, instead return a tuple of:
    - loss: Loss (data loss and regularization loss) for this batch of training
      samples.
    - grads: Dictionary mapping parameter names to gradients of those parameters
      with respect to the loss function; has the same keys as self.params.
    """
    # Unpack variables from the params dictionary
    W1, b1 = self.params['W1'], self.params['b1']
    W2, b2 = self.params['W2'], self.params['b2']
    N, D = X.shape

    # Compute the forward pass
    scores = None
    #############################################################################
    # TODO: Perform the forward pass, computing the class scores for the input. #
    # Store the result in the scores variable, which should be an array of      #
    # shape (N, C).                                                             #
    #############################################################################
    # evaluate class scores, [N x K]
    hidden_layer = np.maximum(0, np.dot(X, W1) + b1)  # ReLU activation
    scores = np.dot(hidden_layer, W2) + b2
    #############################################################################
    #                              END OF YOUR CODE                             #
    #############################################################################
    
    # If the targets are not given then jump out, we're done
    if y is None:
      return scores

    # Compute the loss
    loss = None
    #############################################################################
    # TODO: Finish the forward pass, and compute the loss. This should include  #
    # both the data loss and L2 regularization for W1 and W2. Store the result  #
    # in the variable loss, which should be a scalar. Use the Softmax           #
    # classifier loss.                                                          #
    #############################################################################
    # compute the class probabili。ties
    # scores -= np.max(scores, axis = 1)[:, np.newaxis]
    exp_scores = np.exp(scores - np.max(scores,axis=1,keepdims=True))
    #exp_scores = np.exp(scores)
    probs = exp_scores/np.sum(exp_scores,axis=1,keepdims=True)

    correct_logprobs = np.log(probs[range(N), y])#find the num corrosd to y
    data_loss = -np.sum(correct_logprobs)/N
    reg_loss = 0.5*reg*(np.sum(W1*W1)+np.sum(W2*W2))
    loss = data_loss + reg_loss

    #############################################################################
    #                              END OF YOUR CODE                             #
    #############################################################################

    # Backward pass: compute gradients
    grads = {}
    #############################################################################
    # TODO: Compute the backward pass, computing the derivatives of the weights #
    # and biases. Store the results in the grads dictionary. For example,       #
    # grads['W1'] should store the gradient on W1, and be a matrix of same size #
    #############################################################################
    # compute the gradient on scores
    dscores = probs
    dscores[range(N), y] -= 1
    dscores /= N

    # backpropate the gradient to the parameters
    # first backprop into parameters W2 and b2
    dW2 = np.dot(hidden_layer.T, dscores)
    db2 = np.sum(dscores, axis=0, keepdims=False)
    # next backprop into hidden layer
    dhidden = np.dot(dscores, W2.T) #上一层的损失*该层的权重
    # backprop the ReLU non-linearity
    dhidden[hidden_layer <= 0] = 0
    # finally into W,b
    dW1 = np.dot(X.T, dhidden)
    db1 = np.sum(dhidden, axis=0, keepdims=False)

    # add regularization gradient contribution
    dW2 += reg * W2
    dW1 += reg * W1

    grads['W1'] = dW1
    grads['W2'] = dW2
    grads['b1'] = db1
    grads['b2'] = db2
    # print dW1.shape, dW2.shape, db1.shape, db2.shape
    #############################################################################
    #                              END OF YOUR CODE                             #
    #############################################################################

    return loss, grads

  def train(self, X, y, X_val, y_val,
            learning_rate=1e-3, learning_rate_decay=0.95,
            reg=5e-6, num_iters=100,
            batch_size=200, verbose=False):
    """
    Train this neural network using stochastic gradient descent.

    Inputs:
    - X: A numpy array of shape (N, D) giving training data.
    - y: A numpy array f shape (N,) giving training labels; y[i] = c means that
      X[i] has label c, where 0 <= c < C.
    - X_val: A numpy array of shape (N_val, D) giving validation data.
    - y_val: A numpy array of shape (N_val,) giving validation labels.
    - learning_rate: Scalar giving learning rate for optimization.
    - learning_rate_decay: Scalar giving factor used to decay the learning rate
      after each epoch.
    - reg: Scalar giving regularization strength.
    - num_iters: Number of steps to take when optimizing.
    - batch_size: Number of training examples to use per step.
    - verbose: boolean; if true print progress during optimization.
    """
    num_train = X.shape[0]
    iterations_per_epoch = max(num_train / batch_size, 1)

    # Use SGD to optimize the parameters in self.model
    loss_history = []
    train_acc_history = []
    val_acc_history = []

    for it in xrange(num_iters):
      X_batch = None
      y_batch = None

      #########################################################################
      # TODO: Create a random minibatch of training data and labels, storing  #
      # them in X_batch and y_batch respectively.                             #
      #########################################################################
      sample_index = np.random.choice(num_train, batch_size, replace=True)
     

      X_batch = X[sample_index, :]
      y_batch = y[sample_index]
      #########################################################################
      #                             END OF YOUR CODE                          #
      #########################################################################

      # Compute loss and gradients using the current minibatch
      loss, grads = self.loss(X_batch, y=y_batch, reg=reg)
      loss_history.append(loss)

      #########################################################################
      # TODO: Use the gradients in the grads dictionary to update the         #
      # parameters of the network (stored in the dictionary self.params)      #
      # using stochastic gradient descent. You'll need to use the gradients   #
      # stored in the grads dictionary defined above.                         #
      #########################################################################
      dW1 = grads['W1']
      dW2 = grads['W2']
      db1 = grads['b1']
      db2 = grads['b2']
      self.params['W1'] -= learning_rate * dW1
      self.params['W2'] -= learning_rate * dW2
      self.params['b1'] -= learning_rate * db1
      self.params['b2'] -= learning_rate * db2
      #########################################################################
      #                             END OF YOUR CODE                          #
      #########################################################################

      if verbose and it % 100 == 0:
        print('iteration %d / %d: loss %f' % (it, num_iters, loss))

      # Every epoch, check train and val accuracy and decay learning rate.
      if it % iterations_per_epoch == 0:
        # Check accuracy
        train_acc = (self.predict(X_batch) == y_batch).mean()
        val_acc = (self.predict(X_val) == y_val).mean()
        train_acc_history.append(train_acc)
        val_acc_history.append(val_acc)

        # Decay learning rate
        learning_rate *= learning_rate_decay

    return {
      'loss_history': loss_history,
      'train_acc_history': train_acc_history,
      'val_acc_history': val_acc_history,
    }

  def predict(self, X):
    """
    Use the trained weights of this two-layer network to predict labels for
    data points. For each data point we predict scores for each of the C
    classes, and assign each data point to the class with the highest score.

    Inputs:
    - X: A numpy array of shape (N, D) giving N D-dimensional data points to
      classify.

    Returns:
    - y_pred: A numpy array of shape (N,) giving predicted labels for each of
      the elements of X. For all i, y_pred[i] = c means that X[i] is predicted
      to have class c, where 0 <= c < C.
    """
    y_pred = None

    ###########################################################################
    # TODO: Implement this function; it should be VERY simple!                #
    ###########################################################################
    hidden_lay = np.maximum(0, np.dot(X, self.params['W1']) + self.params['b1'])
    y_pred = np.argmax(np.dot(hidden_lay, self.params['W2']), axis=1)
    ###########################################################################
    #                              END OF YOUR CODE                           #
    ###########################################################################

    return y_pred

TwoLayersNet_test.py

from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt

from cs231n.classifiers.neural_net import TwoLayerNet



'''return ralatives error'''
def rel_error(x,y):
    return np.max(np.abs(x-y)/(np.maximum(1e-8,np.abs(x)+np.abs(y))))



'''
#creat a small net and some toy data to check your implementations

input_size = 4
hidden_size = 10
num_classes = 3
num_inputs = 5

def init_model():
    np.random.seed(0)
    return TwoLayerNet(input_size, hidden_size, num_classes, std=1e-1)

def init_data():
    np.random.seed(1)
    x = 10*np.random.randn(num_inputs,input_size)
    #y = ([0, 1, 2, 2, 1])
    y = np.array([0,1,2,2,1])

    return x,y

x,y = init_data()

net = init_model()

scores = net.loss(x)
print (scores)
print('correct scores:')
correct_scores = np.asarray([
  [-0.81233741, -1.27654624, -0.70335995],
  [-0.17129677, -1.18803311, -0.47310444],
  [-0.51590475, -1.01354314, -0.8504215 ],
  [-0.15419291, -0.48629638, -0.52901952],
  [-0.00618733, -0.12435261, -0.15226949]])
print(correct_scores)
print('Difference between your scores and correct scores:')
print(np.sum(np.abs(scores - correct_scores)))


loss, _ = net.loss(x, y, reg=0.05)
correct_loss = 1.30378789133
print ('loss:%f' % loss)
# should be very small, we get < 1e-12
print('Difference between your loss and correct loss:')
print(np.sum(np.abs(loss - correct_loss)))



from cs231n.gradient_check import eval_numerical_gradient

# Use numeric gradient checking to check your implementation of the backward pass.
# If your implementation is correct, the difference between the numeric and
# analytic gradients should be less than 1e-8 for each of W1, W2, b1, and b2.

loss, grads = net.loss(x, y, reg=0.05)

# these should all be less than 1e-8 or so
for param_name in grads:
    f = lambda W: net.loss(x, y, reg=0.05)[0]
    param_grad_num = eval_numerical_gradient(f, net.params[param_name], verbose=False)
    print('%s max relative error: %e' % (param_name, rel_error(param_grad_num, grads[param_name])))


net = init_model()
stats = net.train(x, y, x, y,
            learning_rate=1e-1, reg=5e-6,
            num_iters=100,  batch_size=4,verbose=False)

print('Final training loss: ', stats['loss_history'][-1])

# plot the loss history
plt.plot(stats['loss_history'])
plt.xlabel('iteration')
plt.ylabel('training loss')
plt.title('Training Loss history')
plt.show()
'''

from cs231n.data_utils import load_CIFAR10


def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000):
    """
    Load the CIFAR-10 dataset from disk and perform preprocessing to prepare
    it for the two-layer neural net classifier. These are the same steps as
    we used for the SVM, but condensed to a single function.
    """
    # Load the raw CIFAR-10 data
    cifar10_dir = 'data/cifar10'
    X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

    # Subsample the data
    mask = list(range(num_training, num_training + num_validation))

    X_val = X_train[mask]
    y_val = y_train[mask]
    mask = list(range(num_training))
    X_train = X_train[mask]
    y_train = y_train[mask]
    mask = list(range(num_test))
    X_test = X_test[mask]
    y_test = y_test[mask]

    # Normalize the data: subtract the mean image
    mean_image = np.mean(X_train, axis=0)
    X_train -= mean_image
    X_val -= mean_image
    X_test -= mean_image

    # Reshape data to rows
    X_train = X_train.reshape(num_training, -1)
    X_val = X_val.reshape(num_validation, -1)
    X_test = X_test.reshape(num_test, -1)

    return X_train, y_train, X_val, y_val, X_test, y_test


# Invoke the above function to get our data.
x_train, y_train, x_val, y_val, x_test, y_test = get_CIFAR10_data()
print('Train data shape: ', x_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', x_val.shape)
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', x_test.shape)
print('Test labels shape: ', y_test.shape)



input_size = 32*32*3
hidden_size = 50
num_classes = 10
'''
net = TwoLayerNet(input_size, hidden_size, num_classes)
stats = net.train(x_train, y_train, x_val, y_val,
                  learning_rate=1e-4, learning_rate_decay=0.95, reg=0.25,
                  num_iters = 10000, batch_size=200,verbose= True)


# Predict on the validation set
val_acc = (net.predict(x_val) == y_val).mean()
print('Validation accuracy: ', val_acc)



# Plot the loss function and train / validation accuracies
plt.subplot(2, 1, 1)
plt.plot(stats['loss_history'])
plt.title('Loss history')
plt.xlabel('Iteration')
plt.ylabel('Loss')

plt.subplot(2, 1, 2)
plt.plot(stats['train_acc_history'], label='train')
plt.plot(stats['val_acc_history'], label='val')
plt.title('Classification accuracy history')
plt.xlabel('Epoch')
plt.ylabel('Clasification accuracy')
plt.show()


from cs231n.vis_utils import visualize_grid

# Visualize the weights of the network

def show_net_weights(net):
    W1 = net.params['W1']
    W1 = W1.reshape(32, 32, 3, -1).transpose(3, 0, 1, 2)
    plt.imshow(visualize_grid(W1, padding=3).astype('uint8'))
    plt.gca().axis('off')
    plt.show()

show_net_weights(net)
'''


best_net = None # store the best model into this \
best_acc = 0
hidden_size_choice = [x*100+50 for x in xrange(11)]
reg_choice = [0.1, 0.5, 5, 15, 50, 100, 1000]
learning_rate_choice = [1e-4, 5e-4, 1e-3, 5e-3, 1e-2, 1e-1, 1]
batch_size_choice = [8, 40, 80, 160, 500, 1000]


#hidden_size_choice = [400]
#learning_rate_choice = [3e-3]
#reg_choice = [0.02, 0.05, 0.1]
#batch_size_choice =[500]
num_iters_choice = [5000]

for batch_size_curr in batch_size_choice:
    for reg_cur in reg_choice:
        for learning_rate_curr in learning_rate_choice:
            for hidden_size_curr in hidden_size_choice:
                for num_iters_curr in num_iters_choice:
                    print
                    print ("current training hidden_size:",hidden_size_curr)
                    print ("current training learning_rate:",learning_rate_curr)
                    print ("current training reg:",reg_cur)
                    print ("current training batch_size:",batch_size_curr)
                    net = TwoLayerNet(input_size, hidden_size_curr, num_classes)
                    stats = net.train(x_train, y_train, x_val, y_val,
                                           learning_rate=learning_rate_curr, learning_rate_decay=0.95,reg=reg_cur,
                                           num_iters=num_iters_curr, batch_size=batch_size_curr, verbose=True)

                    val_acc = (net.predict(x_val) == y_val).mean()
                    print ("current val_acc:%f" % val_acc)
                    if val_acc>best_acc:
                        best_acc = val_acc
                        best_net = net
                        best_stats = stats
                        best_learning_rate = learning_rate_curr
                        best_reg = reg_cur
                        best_batch_size = batch_size_curr
                        print
                        print ("best_acc:",best_acc)
                        print ("best hidden_size:",best_net.params['W1'].shape[1])
                        print ("best learning_rate:",best_learning_rate)
                        print ("best reg:",best_reg)
                        print ("best batch_size:",best_batch_size)
                        print


你可能感兴趣的:(Deep,learning)