求
∑ a 1 = 1 n ∑ a 2 = 1 n ⋯ ∑ a x = 1 n ( ∏ j = 1 x a j k ) f ( gcd ( a 1 , a 2 , . . . , a x ) ) ⋅ gcd ( a 1 , a 2 , . . . , a x ) m o d 1 0 9 + 7 \sum_{a_1=1}^n\sum_{a_2=1}^n\cdots\sum_{a_x=1}^n\Big(\prod_{j=1}^xa_j^k\Big)f(\gcd(a_1,a_2,...,a_x))\cdot\gcd(a_1,a_2,...,a_x)\mod 10^9+7 a1=1∑na2=1∑n⋯ax=1∑n(j=1∏xajk)f(gcd(a1,a2,...,ax))⋅gcd(a1,a2,...,ax)mod109+7
若存在 k > 1 k>1 k>1,且 k 2 ∣ x k^2\mid x k2∣x,则 f ( x ) = 0 f(x)=0 f(x)=0;否则 f ( x ) = 1 f(x)=1 f(x)=1。
1 ≤ n ≤ 2 × 1 0 5 , 1 ≤ k , x ≤ 1 0 9 1\le n\le2\times10^5,1\le k,x\le10^9 1≤n≤2×105,1≤k,x≤109
首先 f ( x ) = ∣ μ ( x ) ∣ f(x)=|\mu(x)| f(x)=∣μ(x)∣;其次根据乘法分配律,有
g ( n ) = 令 ∑ a 1 = 1 n ∑ a 2 = 1 n ⋯ ∑ a x = 1 n ( ∏ j = 1 x a j k ) = ∑ a 1 = 1 n a 1 k ∑ a 2 = 1 n a 2 k ⋯ ∑ a x = 1 n a x k = ( ∑ i = 1 n i k ) x \begin{aligned} g(n)\overset{\text{令}}{=}&\sum_{a_1=1}^n\sum_{a_2=1}^n\cdots\sum_{a_x=1}^n\Big(\prod_{j=1}^xa_j^k\Big)\\ =&\sum_{a_1=1}^na_1^k\sum_{a_2=1}^na_2^k\cdots\sum_{a_x=1}^na_x^k\\ =&\Big(\sum_{i=1}^ni^k\Big)^x \end{aligned} g(n)=令==a1=1∑na2=1∑n⋯ax=1∑n(j=1∏xajk)a1=1∑na1ka2=1∑na2k⋯ax=1∑naxk(i=1∑nik)x
枚举 gcd \gcd gcd化简原式
∑ a 1 = 1 n ∑ a 2 = 1 n ⋯ ∑ a x = 1 n ( ∏ j = 1 x a j k ) f ( gcd ( a 1 , a 2 , . . . , a x ) ) ⋅ gcd ( a 1 , a 2 , . . . , a x ) = ∑ d = 1 n ∣ μ ( d ) ∣ d ∑ a 1 = 1 n ∑ a 2 = 1 n ⋯ ∑ a x = 1 n ( ∏ j = 1 x a j k ) [ gcd ( a 1 , a 2 , . . . , a x ) = d ] = ∑ d = 1 n ∣ μ ( d ) ∣ d k x + 1 ∑ b 1 = 1 ⌊ n d ⌋ ∑ b 2 = 1 ⌊ n d ⌋ ⋯ ∑ b x = 1 ⌊ n d ⌋ ( ∏ j = 1 x b j k ) [ gcd ( b 1 , b 2 , . . . , b x ) = 1 ] b i = ⌊ a i d ⌋ = ∑ d = 1 n ∣ μ ( d ) ∣ d k x + 1 ∑ b 1 = 1 ⌊ n d ⌋ ∑ b 2 = 1 ⌊ n d ⌋ ⋯ ∑ b x = 1 ⌊ n d ⌋ ( ∏ j = 1 x b j k ) ∑ p ∣ gcd μ ( p ) = ∑ d = 1 n ∣ μ ( d ) ∣ d k x + 1 ∑ p = 1 ⌊ n d ⌋ μ ( p ) p k x ∑ c 1 = 1 ⌊ n p d ⌋ ∑ c 2 = 1 ⌊ n p d ⌋ ⋯ ∑ c x = 1 ⌊ n p d ⌋ ( ∏ j = 1 x c j k ) c i = ⌊ b i p ⌋ = ∑ d = 1 n ∣ μ ( d ) ∣ d k x + 1 ∑ p = 1 ⌊ n d ⌋ μ ( p ) p k x g ( ⌊ n p d ⌋ ) = ∑ T = 1 n g ( ⌊ n T ⌋ ) ∑ d ∣ T ∣ μ ( d ) ∣ d k x + 1 μ ( T d ) ( T d ) k x T = p d = ∑ T = 1 n g ( ⌊ n T ⌋ ) T k x ∑ d ∣ T ∣ μ ( d ) ∣ μ ( T d ) d \begin{aligned} &\sum_{a_1=1}^n\sum_{a_2=1}^n\cdots\sum_{a_x=1}^n\Big(\prod_{j=1}^xa_j^k\Big)f(\gcd(a_1,a_2,...,a_x))\cdot\gcd(a_1,a_2,...,a_x)\\ =&\sum_{d=1}^n|\mu(d)|d\sum_{a_1=1}^n\sum_{a_2=1}^n\cdots\sum_{a_x=1}^n\Big(\prod_{j=1}^xa_j^k\Big)[\gcd(a_1,a_2,...,a_x)=d]\\ =&\sum_{d=1}^n|\mu(d)|d^{kx+1}\sum_{b_1=1}^{\lfloor\frac nd\rfloor}\sum_{b_2=1}^{\lfloor\frac nd\rfloor}\cdots\sum_{b_x=1}^{\lfloor\frac nd\rfloor}\Big(\prod_{j=1}^xb_j^k\Big)[\gcd(b_1,b_2,...,b_x)=1]&b_i=\lfloor\frac{a_i}d\rfloor\\ =&\sum_{d=1}^n|\mu(d)|d^{kx+1}\sum_{b_1=1}^{\lfloor\frac nd\rfloor}\sum_{b_2=1}^{\lfloor\frac nd\rfloor}\cdots\sum_{b_x=1}^{\lfloor\frac nd\rfloor}\Big(\prod_{j=1}^xb_j^k\Big)\sum_{p\mid\gcd}\mu(p)\\ =&\sum_{d=1}^n|\mu(d)|d^{kx+1}\sum_{p=1}^{\lfloor\frac nd\rfloor}\mu(p)p^{kx}\sum_{c_1=1}^{\lfloor\frac n{pd}\rfloor}\sum_{c_2=1}^{\lfloor\frac n{pd}\rfloor}\cdots\sum_{c_x=1}^{\lfloor\frac n{pd}\rfloor}\Big(\prod_{j=1}^xc_j^k\Big)&c_i=\lfloor\frac{b_i}p\rfloor\\ =&\sum_{d=1}^n|\mu(d)|d^{kx+1}\sum_{p=1}^{\lfloor\frac nd\rfloor}\mu(p)p^{kx}g(\lfloor\frac n{pd}\rfloor)\\ =&\sum_{T=1}^ng(\lfloor\frac nT\rfloor)\sum_{d|T}|\mu(d)|d^{kx+1}\mu(\frac Td)(\frac Td)^{kx}&T=pd\\ =&\sum_{T=1}^ng(\lfloor\frac nT\rfloor)T^{kx}\sum_{d|T}|\mu(d)|\mu(\frac Td)d\\ \end{aligned} =======a1=1∑na2=1∑n⋯ax=1∑n(j=1∏xajk)f(gcd(a1,a2,...,ax))⋅gcd(a1,a2,...,ax)d=1∑n∣μ(d)∣da1=1∑na2=1∑n⋯ax=1∑n(j=1∏xajk)[gcd(a1,a2,...,ax)=d]d=1∑n∣μ(d)∣dkx+1b1=1∑⌊dn⌋b2=1∑⌊dn⌋⋯bx=1∑⌊dn⌋(j=1∏xbjk)[gcd(b1,b2,...,bx)=1]d=1∑n∣μ(d)∣dkx+1b1=1∑⌊dn⌋b2=1∑⌊dn⌋⋯bx=1∑⌊dn⌋(j=1∏xbjk)p∣gcd∑μ(p)d=1∑n∣μ(d)∣dkx+1p=1∑⌊dn⌋μ(p)pkxc1=1∑⌊pdn⌋c2=1∑⌊pdn⌋⋯cx=1∑⌊pdn⌋(j=1∏xcjk)d=1∑n∣μ(d)∣dkx+1p=1∑⌊dn⌋μ(p)pkxg(⌊pdn⌋)T=1∑ng(⌊Tn⌋)d∣T∑∣μ(d)∣dkx+1μ(dT)(dT)kxT=1∑ng(⌊Tn⌋)Tkxd∣T∑∣μ(d)∣μ(dT)dbi=⌊dai⌋ci=⌊pbi⌋T=pd
令 h ( T ) = T k x ∑ d ∣ T ∣ μ ( d ) ∣ μ ( T d ) d \displaystyle h(T)=T^{kx}\sum_{d|T}|\mu(d)|\mu(\frac Td)d h(T)=Tkxd∣T∑∣μ(d)∣μ(dT)d,用枚举倍数的方法、降幂公式和快速幂就可以在 O ( n log n + n log P ) O(n\log n+n\log P) O(nlogn+nlogP)的时间内求出所有的 h ( T ) h(T) h(T)。
令 S ( n ) = ∑ T = 1 n g ( ⌊ n T ⌋ ) h ( T ) \displaystyle S(n)=\sum_{T=1}^ng(\lfloor\frac nT\rfloor)h(T) S(n)=T=1∑ng(⌊Tn⌋)h(T),到这里已经可以利用数论分块在 O ( n log n P + T n ) O(n\log nP+T\sqrt n) O(nlognP+Tn)的时间内解决这道题了,但是还可以优化。
考虑如何快速求出所有的 S ( n ) S(n) S(n)。
注意到对于 i j ≤ n < ( i + 1 ) j ij\le n<(i+1)j ij≤n<(i+1)j的所有 n n n,都含有 g ( i ) h ( j ) g(i)h(j) g(i)h(j)这一项,所以可以枚举 i , j i,j i,j,转化为对 S ( n ) S(n) S(n)进行区间加法,差分后求前缀和即可,时间复杂度 O ( ∑ i = 1 n ∑ j = 1 ⌊ n i ⌋ 1 ) = O ( n log n ) \displaystyle O(\sum_{i=1}^n\sum_{j=1}^{\lfloor\frac ni\rfloor}1)=O(n\log n) O(i=1∑nj=1∑⌊in⌋1)=O(nlogn)。
总时间复杂度 O ( n log n + n log P + T ) O(n\log n+n\log P+T) O(nlogn+nlogP+T)
#include
using namespace std;
const int N = 2e5 + 5, P = 1e9 + 7;
typedef long long ll;
int n = 2e5, k, x;
int is[N], pr[N], mu[N], g[N], h[N], S[N];
inline int FastExp(int a, int b) {
int x = 1;
for (; b; b >>= 1, a = (ll)a * a % P)
if (b & 1)
x = (ll)x * a % P;
return x;
}
int main() {
scanf("%*d%d%d", &k, &x);
mu[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!is[i])
pr[++pr[0]] = i, mu[i] = -1;
for (int j = 1, x; j <= pr[0] && (x = i * pr[j]) <= n; ++j) {
is[x] = 1, mu[x] = -mu[i];
if (!(i % pr[j])) {
mu[x] = 0;
break;
}
}
}
for (int i = 1; i <= n; ++i)
g[i] = (g[i - 1] + FastExp(i, k)) % P;
for (int i = 1; i <= n; ++i)
g[i] = FastExp(g[i], x);
for (int i = 1; i <= n; ++i)
for (int j = i; j <= n; j += i)
mu[i] ? h[j] = (h[j] + mu[j / i] * i + P) % P : 0;
for (int i = 1; i <= n; ++i)
h[i] = (ll)h[i] * FastExp(i, (ll)k * x % (P - 1)) % P;
for (int i = 1; i <= n; ++i)
for (int j = 1; i * j <= n; ++j) {
int m = i * j;
S[m] = (S[m] + (ll)g[i] * h[j] % P) % P;
if (m + j <= n)
S[m + j] = (S[m + j] - (ll)g[i] * h[j] % P + P) % P;
}
for (int i = 1; i <= n; ++i)
S[i] = (S[i] + S[i - 1]) % P;
while (~scanf("%d", &n))
printf("%d\n", S[n]);
return 0;
}