HDU 5638 Toposort 拓扑排序 优先队列

时间限制:1S / 空间限制:256MB

【在线测试提交传送门】

【问题描述】

    There is a directed acyclic graph with n vertices and m edges. You are allowed to delete exact k edges in such way that the lexicographically minimal topological sort of the graph is minimum possible.
    给定一个有n个顶点,m条边的DAG(有向无环图),删除其中的K条边,使得这个图的拓扑排序的字典序最小。

【输入格式】

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains three integers n, m and k (1≤n≤100000,0≤k≤m≤200000) -- the number of vertices, the number of edges and the number of edges to delete.

For the next m lines, each line contains two integers ui and vi, which means there is a directed edge from ui to vi (1≤ui,vi≤n).

You can assume the graph is always a dag. The sum of values of n in all test cases doesn't exceed 10^6. The sum of values of m in all test cases doesn't exceed 2×10^6.
第一行,一个整数T,表示有T组测试数据,对于每组测试数据:
第一行,包含3个整数n,m和k(1≤n≤100000,0≤k≤m≤200000) 。分别表示顶点数、边数和要删除的边数。
接下来m行,每行包含两个整数ui和vi,表示一条从ui到vi的边(1≤ui,vi≤n)。
输入数据保证是一个DGA,所有测试点中n的和不超过10^6,m的和不超过22×10^6。

【输出格式】

For each test case, output an integer S=(∑i=1ni⋅pi) mod (10^9+7), where p1,p2,...,pn is the lexicographically minimal topological sort of the graph.
对于每组测试数据,输出一个整数S,等于i乘以pi的和,结果对10^9+7取余。其中pi表示字典序最小的拓扑序中的第i个元素。

【输入样例1】

3
4 2 0
1 2
1 3
4 5 1
2 1
3 1
4 1
2 3
2 4
4 4 2
1 2
2 3
3 4
1 4

【输出样例1】

30
27
30

【题目来源】

HDU 5638

【解题思路】

删除的点一定是入度小于等于k,且编号最小的点,使用优先队列维护。

【参考代码】

#include
#include
#include
#include
#include
using namespace std;
const int maxn = 2e5+7;
const int mod = 1e9+7;
vector<int> E[maxn],rE[maxn];
int in[maxn];
int inq[maxn];
int vis[maxn];
priority_queue<int,vector<int>,greater<int> >Q;
void init()
{
    for(int i=0;i0;
    memset(inq,0,sizeof(inq));
    memset(vis,0,sizeof(vis));
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        init();
        int n,m,k;
        scanf("%d%d%d",&n,&m,&k);
        for(int i=0;iint x,y;scanf("%d%d",&x,&y);
            E[x].push_back(y);
            rE[y].push_back(x);
            in[y]++;
        }
        long long Ans = 0;
        for(int i = 1 ; i <= n ; ++ i)
        {
            if(in[i]<=k)
            {
                Q.push( i );
                inq[i] = 1;
            }
        }
        int num = 1;
        while(!Q.empty()){
            int x = Q.top() ; Q.pop(); inq[x] = 0;
            if(k >= in[x]){
                vis[x] = 1 , k -= in[x];
                Ans=(Ans+1ll*num*x)%mod;
                num=num+1;
                for(int i=0;iint v =E[x][i];
                    if(vis[v]) continue;
                    in[v]--;
                    if(in[v] <= k&&!inq[v]){
                        Q.push(v);
                        inq[v] = 1;
                    }
                }
            }
        }
        printf("%I64d\n",Ans);
    }
}

你可能感兴趣的:(====数据结构====,数据结构,STL,优先队列,图论,拓扑排序)