uboot流程分析--修改android启动模式按键

   本人用的android平台用的bootloader用的是uboot,貌似大多数手持设备平台都不用这个,因为功能过于强大用不上,反而显得太复杂了。不知道这个平台开发者是怎么想的。既然用了那就来分析一下,顺便修改一下其中的几个小问题,以符合我们的要求。

  uboot等同于其他所有的bootloader程序,从根本上讲是一个稍复杂的裸机程序,是最底层的东西,要分析裸机程序我们要从它的连接文件开始。连接文件(.lds文件)定义了程序编译之后整个连接过程,这样我们就可以找到这个程序的第一句汇编代码,进而来下一步分析。uboot的链接文件代码在android\bootable\bootloader\uboot-imx\u-boot.lds

OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")  //文件输出格式
OUTPUT_ARCH(arm)
ENTRY(_start)       //首地址标示符
SECTIONS
{
 . = 0x00000000;    //其实地址0
 . = ALIGN(4);      //4字节对齐
 .text :        //代码段
 {
   board/freescale/mx6q_sabresd/flash_header.o (.text.flasheader)   //第一个文件是board/freescale/mx6q_sabresd/flash_header.o
   cpu/arm_cortexa8/start.o         //第二个cpu/arm_cortexa8/start.o 
   board/freescale/mx6q_sabresd/libmx6q_sabresd.a (.text)
   lib_arm/libarm.a (.text)
   net/libnet.a (.text)
   drivers/mtd/libmtd.a (.text)
   drivers/mmc/libmmc.a (.text)
   . = DEFINED(env_offset) ? env_offset : .;
   common/env_embedded.o(.text)
   *(.text)             //剩余的所有代码
 }
 . = ALIGN(4);
 .rodata : { *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*))) } //readonly data 段
 . = ALIGN(4);
 .data : { *(.data) }       //所有的readonly data
 . = ALIGN(4);
 .got : { *(.got) }
 . = .;
 __u_boot_cmd_start = .;        //u_boot_cmd段,里面是所有uboot命令的一个列表
 .u_boot_cmd : { *(.u_boot_cmd) }
 __u_boot_cmd_end = .;
 . = ALIGN(4);
 _end_of_copy = .;
 __bss_start = .;           //bss段 就是内存数据段
 .bss : { *(.bss) }
 _end = .;
}

从上面的代码可以看出我们编译生成的二进制应用程序组成是:代码段->rodata段->uboot命令列表->bss段。我们启动这个应用程序时候是从,0地址开始的,因此我们来看
board/freescale/mx6q_sabresd/flash_header.s这个文件。
  这个文件中除了分配内存和宏定义的伪汇编指令以外,真正执行的命令有一条
.section ".text.flasheader", "x"
	b	_start
	.org	CONFIG_FLASH_HEADER_OFFSET
也就是说,这个文件一执行就直接跳到_start 位置处。_start 在android\bootable\bootloader\uboot-imx\cpu\arm_cortexa8\ start.S中,因此我们来看这个文件代码

.globl _start
_start: b	reset       
这里直接跳转的reset中接下来看

reset:
	/*
	 * set the cpu to SVC32 mode	cpu设置成32位管理模式
	 */
	mrs	r0, cpsr
	bic	r0, r0, #0x1f
	orr	r0, r0, #0xd3
	msr	cpsr,r0

#if (CONFIG_OMAP34XX)	//因为我们的cpu不是ompa的 所以这段不会编译
.............................
#endif
	/* the mask ROM code should have PLL and others stable */
#ifndef CONFIG_SKIP_LOWLEVEL_INIT
	bl	cpu_init_crit		
#endif

这里接下来执行cpu_init_crit

/*************************************************************************
 *
 * CPU_init_critical registers
 *
 * setup important registers
 * setup memory timing
 *
 *************************************************************************/
cpu_init_crit:
	/*
	 * Invalidate L1 I/D
	 */
	mov	r0, #0			@ set up for MCR
	mcr	p15, 0, r0, c8, c7, 0	@ invalidate TLBs
	mcr	p15, 0, r0, c7, c5, 0	@ invalidate icache

	/*
	 * disable MMU stuff and caches		//关闭mmu
	 */
	mrc	p15, 0, r0, c1, c0, 0
	bic	r0, r0, #0x00002000	@ clear bits 13 (--V-)
	bic	r0, r0, #0x00000007	@ clear bits 2:0 (-CAM)
	orr	r0, r0, #0x00000002	@ set bit 1 (--A-) Align
	orr	r0, r0, #0x00000800	@ set bit 12 (Z---) BTB
	mcr	p15, 0, r0, c1, c0, 0

	/*
	 * Jump to board specific initialization...
	 * The Mask ROM will have already initialized
	 * basic memory. Go here to bump up clock rate and handle
	 * wake up conditions.
	 */
	mov	ip, lr		@ persevere link reg across call
	bl	lowlevel_init	@ go setup pll,mux,memory//执行lowlevel_init这个函数代码在
                        	@\bootloader\uboot-imx\board\freescale\mx6q_sabresd\lowlevel_init.S中
                        	@主要对时钟,外部ram,rom等进行了初始化代码不贴了。
	mov	lr, ip		@ restore link
	mov	pc, lr		@ back to my caller

初始化完成后,接下来执行

#ifndef CONFIG_SKIP_RELOCATE_UBOOT
relocate:				@ relocate U-Boot to RAM	将uboot重新定位到内存中
	adr	r0, _start		@ r0 <- current position of code
	ldr	r1, _TEXT_BASE		@ test if we run from flash or RAM 
	cmp	r0, r1			@ don't reloc during debug测试当前代码是否已经在内存中
	beq	stack_setup		@如果在的话就直接跳转到stack_setup


	ldr	r2, _armboot_start	@如果不在的话,加载_armboot_start地址到r2中。_armboot_start是uboot执行的主体c函数。
	ldr	r3, _bss_start
	sub	r2, r3, r2		@ r2 <- size of armboot计算bss_start-armboot_start 保存到R2中,也就是uboot的总大小
	add	r2, r0, r2		@ r2 <- source end address 计算出uboot代码和rodata地址

copy_loop:				@ copy 32 bytes at a time	//开始拷贝
	ldmia	r0!, {r3 - r10}		@ copy from source address [r0]
	stmia	r1!, {r3 - r10}		@ copy to   target address [r1]
	cmp	r0, r2			@ until source end addreee [r2]
	ble	copy_loop
#endif	/* CONFIG_SKIP_RELOCATE_UBOOT */

	/* Set up the stack */
stack_setup:
	ldr	r0, _TEXT_BASE		@ upper 128 KiB: relocated uboot
	sub	r0, r0, #CONFIG_SYS_MALLOC_LEN @ malloc area//为c语言malloc函数分配内存
	sub	r0, r0, #CONFIG_SYS_GBL_DATA_SIZE @ bdinfo
#ifdef CONFIG_USE_IRQ
	sub	r0, r0, #(CONFIG_STACKSIZE_IRQ + CONFIG_STACKSIZE_FIQ)
#endif
	sub	sp, r0, #12		@ leave 3 words for abort-stack//分配c语言堆栈
	and	sp, sp, #~7		@ 8 byte alinged for (ldr/str)d

	/* Clear BSS (if any). Is below tx (watch load addr - need space) */
clear_bss:
	ldr	r0, _bss_start		@ find start of bss segment	//清除bss段
	ldr	r1, _bss_end		@ stop here
	mov	r2, #0x00000000		@ clear value
clbss_l:
	str	r2, [r0]		@ clear BSS location
	cmp	r0, r1			@ are we at the end yet
	add	r0, r0, #4		@ increment clear index pointer
	bne	clbss_l			@ keep clearing till at end

#ifdef CONFIG_ARCH_MMU
	bl board_mmu_init	//初始化mmu
#endif
	ldr	pc, _start_armboot	@ jump to C code以上所有的初始化就已经完成了,接下类正式执行c语言代码了。这才是我们的重点

_start_armboot: .word start_armboot

接下来正式看C代码,也就是start_armboot这个函数代码在android\bootable\bootloader\uboot-imx\lib_arm\board.c中

void start_armboot (void)
{
	init_fnc_t **init_fnc_ptr;
	char *s;
#if defined(CONFIG_VFD) || defined(CONFIG_LCD)
	unsigned long addr;
#endif

	/* Pointer is writable since we allocated a register for it */
	gd = (gd_t*)(_armboot_start - CONFIG_SYS_MALLOC_LEN - sizeof(gd_t));
	//分配一段内存.在cpu存储控制器初始化之前,是不能访问外部ram的,因此需要一小段
	//内存来运行最初的初始化函数,这段内存一般是cpu内部ram
	/* compiler optimization barrier needed for GCC >= 3.4 */
	__asm__ __volatile__("": : :"memory");

	memset ((void*)gd, 0, sizeof (gd_t));
	gd->bd = (bd_t*)((char*)gd - sizeof(bd_t));
	memset (gd->bd, 0, sizeof (bd_t));

	gd->flags |= GD_FLG_RELOC;

	monitor_flash_len = _bss_start - _armboot_start;

	for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) {	
		if ((*init_fnc_ptr)() != 0) {
			hang ();
		}
	}

注意看这里init_sequence的定义

init_fnc_t *init_sequence[] = {
#if defined(CONFIG_ARCH_CPU_INIT)
	arch_cpu_init,		/* basic arch cpu dependent setup */
#endif
	board_init,		/* basic board dependent setup */
#if defined(CONFIG_USE_IRQ)
	interrupt_init,		/* set up exceptions */
#endif
	timer_init,		/* initialize timer */
	env_init,		/* initialize environment */
	init_baudrate,		/* initialze baudrate settings */
	serial_init,		/* serial communications setup */
	console_init_f,		/* stage 1 init of console */
	display_banner,		/* say that we are here */
#if defined(CONFIG_DISPLAY_CPUINFO)
	print_cpuinfo,		/* display cpu info (and speed) */
#endif
#if defined(CONFIG_DISPLAY_BOARDINFO)
	checkboard,		/* display board info */
#endif
#if defined(CONFIG_HARD_I2C) || defined(CONFIG_SOFT_I2C)
	init_func_i2c,
#endif
	dram_init,		/* configure available RAM banks */
#if defined(CONFIG_CMD_PCI) || defined (CONFIG_PCI)
	arm_pci_init,
#endif
	display_dram_config,
	NULL,
};
这个是一个函数指针的数组,涉及到cpu的最后的一些初始化。到了这里cpu的所有初始化都完成了

我们继续看板子的其他配置

#ifdef CONFIG_LCD   //lcd缓存设置
	/* board init may have inited fb_base */
	if (!gd->fb_base) {
#		ifndef PAGE_SIZE
#		  define PAGE_SIZE 4096
#		endif
		/*
		 * reserve memory for LCD display (always full pages)
		 */
		/* bss_end is defined in the board-specific linker script */
		addr = (_bss_end + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1);
		lcd_setmem (addr);
		gd->fb_base = addr;
	}
#endif /* CONFIG_LCD */

	env_relocate ();//设置环境变量 也就是printenv 打印出来的那些

#ifdef CONFIG_VFD
	/* must do this after the framebuffer is allocated */
	drv_vfd_init(); //空函数
#endif /* CONFIG_VFD */

#ifdef CONFIG_SERIAL_MULTI
	serial_initialize();//串口初始化
#endif

	/* IP Address */
	gd->bd->bi_ip_addr = getenv_IPaddr ("ipaddr");

#if defined CONFIG_SPLASH_SCREEN && defined CONFIG_VIDEO_MX5
	setup_splash_image();//lcd显示log
#endif
    //重新定义stdio的位置,在本环境中被定义到了串口上
	stdio_init ();	/* get the devices list going. */

	jumptable_init ();//把一些初始化函数的指针放到gd中,为以后调用

#if defined(CONFIG_API)
	/* Initialize API */
	api_init ();
#endif

	console_init_r ();	/* fully init console as a device 控制台初始化*/

#if defined(CONFIG_ARCH_MISC_INIT)
	/* miscellaneous arch dependent initialisations */
	arch_misc_init ();//空函数
#endif
#if defined(CONFIG_MISC_INIT_R)
	/* miscellaneous platform dependent initialisations */
	misc_init_r ();//空函数
#endif

	/* enable exceptions */
	enable_interrupts ();//使能中断

	/* Perform network card initialisation if necessary */
#ifdef CONFIG_DRIVER_TI_EMAC    
	/* XXX: this needs to be moved to board init */
extern void davinci_eth_set_mac_addr (const u_int8_t *addr);//不编译
	if (getenv ("ethaddr")) {
		uchar enetaddr[6];     
		eth_getenv_enetaddr("ethaddr", enetaddr);
		davinci_eth_set_mac_addr(enetaddr);
	}
#endif

#ifdef CONFIG_DRIVER_CS8900
	/* XXX: this needs to be moved to board init */
	cs8900_get_enetaddr ();//不编译
#endif

#if defined(CONFIG_DRIVER_SMC91111) || defined (CONFIG_DRIVER_LAN91C96)
	/* XXX: this needs to be moved to board init */
	if (getenv ("ethaddr")) {
		uchar enetaddr[6];
		eth_getenv_enetaddr("ethaddr", enetaddr);//不编译
		smc_set_mac_addr(enetaddr);
	}
#endif /* CONFIG_DRIVER_SMC91111 || CONFIG_DRIVER_LAN91C96 */

#if defined(CONFIG_ENC28J60_ETH) && !defined(CONFIG_ETHADDR)
	extern void enc_set_mac_addr (void);//不编译
	enc_set_mac_addr ();
#endif /* CONFIG_ENC28J60_ETH && !CONFIG_ETHADDR*/

	/* Initialize from environment */
	if ((s = getenv ("loadaddr")) != NULL) {
		load_addr = simple_strtoul (s, NULL, 16);
	}
#if defined(CONFIG_CMD_NET)
	if ((s = getenv ("bootfile")) != NULL) {
		copy_filename (BootFile, s, sizeof (BootFile));
	}
#endif

#ifdef BOARD_LATE_INIT
	board_late_init (); //初始化i2c,pmic等
#endif
接下来涉及到了我们最关心的地方,启动模式和按键响应

#ifdef CONFIG_ANDROID_RECOVERY
	check_recovery_mode();	//检测是否进入recovery
#endif

#if defined(CONFIG_CMD_NET)
#if defined(CONFIG_NET_MULTI)
	puts ("Net:   ");
#endif
	eth_initialize(gd->bd);	//根据gd的配置初始化以太网
#if defined(CONFIG_RESET_PHY_R)
	debug ("Reset Ethernet PHY\n");
	reset_phy();
#endif
#endif
#ifdef CONFIG_FASTBOOT
	check_fastboot_mode();	//检测是否进入fastboot
#endif

从代码里可以看出我们是首先检测recovery,然后才检测fastboot模式。

我们先来看原版是怎么做的,首先是recovery

void check_recovery_mode(void)
{
	if (check_key_pressing())
		setup_recovery_env();
	else if (check_recovery_cmd_file()) {
		puts("Recovery command file founded!\n");
		setup_recovery_env();
	}
}
这里首先检测是否有合法的按键按下,如果有的话就配置环境变量进入recovery

没有按键就检测uboot命令文件,看是不是主系统要求进入recovery

因此我们这里的重点是check_key_pressing()这个函数,仔细研究发现这个函数用的是uboot

标准的gpio驱动,官方给我们移植的uboot里面并没有初始化这个驱动,而是自己另外写的。也就是说

我们调用check_key_pressing()这个函数永远都返回0值而执行else if (check_recovery_cmd_file())这一句

我们来看 check_recovery_cmd_file()

int check_recovery_cmd_file(void)
{
	int button_pressed = 0;
	int recovery_mode = 0;

	recovery_mode = check_and_clean_recovery_flag();//读取kernel的recovery标志位,如果有的话就要进入recovery

	/* Check Recovery Combo Button press or not. */
	mxc_iomux_v3_setup_pad(MX6X_IOMUX(PAD_GPIO_5__GPIO_1_5));	//初始化vol down的gpio

	gpio_direction_input(GPIO_VOL_DN_KEY);

	if (gpio_get_value(GPIO_VOL_DN_KEY) == 0) { /* VOL_DN key is low assert *///如果vol down已经按下
		button_pressed = 1;
		printf("Recovery key pressed\n");
	}

	return recovery_mode || button_pressed;	//返回进入recovery
}

也就是说官方修改的uboot走了偷懒的方法,直接在check_recovery_cmd_file()增加了一个按键的盘定。很不正规

因此我们下一步要修改它,从官方的基础上走,我们也不走标准uboot 按键驱动,而是自己写。

修改之前先来看原版fastboot怎么进入的

/* export to lib_arm/board.c */
void check_fastboot_mode(void)
{
	if (fastboot_check_and_clean_flag())
		do_fastboot(NULL, 0, 0, 0);
}
这里调用fastboot_check_and_clean_flag()来判定是否进入fastboot
/* check if the recovery bit is set by kernel, it can be set by kernel
 * issue a command '# reboot fastboot' */
int fastboot_check_and_clean_flag(void)
{
	int flag_set = 0;
	u32 reg;
	reg = readl(SRC_BASE_ADDR + SRC_GPR10);

	flag_set = !!(reg & ANDROID_FASTBOOT_BOOT);

	/* clean it in case looping infinite here.... */
	if (flag_set) {
		reg &= ~ANDROID_FASTBOOT_BOOT;
		writel(reg, SRC_BASE_ADDR + SRC_GPR10);
	}

	return flag_set;
}
从这里看出,要进入进入fastboot,只能检测(SRC_BASE_ADDR + SRC_GPR10)寄存器的

ANDROID_FASTBOOT_BOOT位是否被kernel置位,并没有按键,因此我们的板子不可能靠

按键进入fastboot的实际情况也确实这样。因此我们要修改这一块,由于我们的cpu在power键按住5s

以后会强制关机。因此开机后我们必须松开power键,我们板子检测的按键只能是1个。开机时vol up键进入

recovery,按住vol down进入fastboot模式。我们修改代码如下 

新建个按键检测函数check_key()

int check_key(void)
{
   	#define PRESSED_VOLUP 1
	#define PRESSED_VOLDOWN 2
    #define KEY_MASK  (PRESSED_VOLUP|PRESSED_VOLDOWN)
    #define RECOVERY_KEY_MASK (PRESSED_VOLUP)
    #define FASTBOOT_KEY_MASK (PRESSED_VOLDOWN)

	int state = 0;
    mxc_iomux_v3_setup_pad(MX6X_IOMUX(PAD_GPIO_5__GPIO_1_5));//vol down
    mxc_iomux_v3_setup_pad(MX6X_IOMUX(PAD_GPIO_5__GPIO_1_4));//vol up
	gpio_direction_input(GPIO_VOL_DN_KEY);
    gpio_direction_input(GPIO_VOL_UP_KEY);
	
	if (gpio_get_value(GPIO_VOL_UP_KEY) == 0)
		state |= PRESSED_VOLUP;
	if (gpio_get_value(GPIO_VOL_DN_KEY) == 0)
	    state |= PRESSED_VOLDOWN;

    //如果摁下power+voldown就进入fastboot 这个的优先级要比recovery高。
    //就算同时按下power+volup+voldown三个键也要进入fastboot模式
	if ((state & KEY_MASK) == FASTBOOT_KEY_MASK)    
		return 1;
	if(((state & KEY_MASK) == FASTBOOT_KEY_MASK))
	    return 2;

	return 0;
}

主函数判定的代码段修改为

if (check_key()==1)
    do_fastboot(NULL, 0, 0, 0);
if (check_key()==2)    
	setup_recovery_env();

if (check_and_clean_recovery_flag()) {
	setup_recovery_env();
}
if (fastboot_check_and_clean_flag())
	do_fastboot(NULL, 0, 0, 0);

这样我们的启动模式按键就修改完成了,编译后测试成功。


下面我们还有代码没有分析完:uboot的主循环:main_loop()

代码在:\bootable\bootloader\uboot-imx\common\main.c

void main_loop (void)
{
#ifndef CONFIG_SYS_HUSH_PARSER
	static char lastcommand[CONFIG_SYS_CBSIZE] = { 0, };
	int len;
	int rc = 1;
	int flag;
#endif

#if defined(CONFIG_BOOTDELAY) && (CONFIG_BOOTDELAY >= 0)
	char *s;
	int bootdelay;
#endif
#ifdef CONFIG_PREBOOT
	char *p;
#endif
#ifdef CONFIG_BOOTCOUNT_LIMIT
	unsigned long bootcount = 0;
	unsigned long bootlimit = 0;
	char *bcs;
	char bcs_set[16];
#endif /* CONFIG_BOOTCOUNT_LIMIT */

#if defined(CONFIG_VFD) && defined(VFD_TEST_LOGO)
	ulong bmp = 0;		/* default bitmap */
	extern int trab_vfd (ulong bitmap);

#ifdef CONFIG_MODEM_SUPPORT
	if (do_mdm_init)
		bmp = 1;	/* alternate bitmap */
#endif
	trab_vfd (bmp);
#endif	/* CONFIG_VFD && VFD_TEST_LOGO */

#if defined(CONFIG_UPDATE_TFTP)
	update_tftp ();
#endif /* CONFIG_UPDATE_TFTP */

#ifdef CONFIG_BOOTCOUNT_LIMIT
	bootcount = bootcount_load();
	bootcount++;
	bootcount_store (bootcount);
	sprintf (bcs_set, "%lu", bootcount);
	setenv ("bootcount", bcs_set);
	bcs = getenv ("bootlimit");
	bootlimit = bcs ? simple_strtoul (bcs, NULL, 10) : 0;
#endif /* CONFIG_BOOTCOUNT_LIMIT */

#ifdef CONFIG_MODEM_SUPPORT
	debug ("DEBUG: main_loop:   do_mdm_init=%d\n", do_mdm_init);
	if (do_mdm_init) {
		char *str = strdup(getenv("mdm_cmd"));
		setenv ("preboot", str);  /* set or delete definition */
		if (str != NULL)
			free (str);
		mdm_init(); /* wait for modem connection */
	}
#endif  /* CONFIG_MODEM_SUPPORT */

#ifdef CONFIG_VERSION_VARIABLE
	{
		extern char version_string[];

		setenv ("ver", version_string);  /* set version variable */
	}
#endif /* CONFIG_VERSION_VARIABLE */

#ifdef CONFIG_SYS_HUSH_PARSER
	u_boot_hush_start ();
#endif

#if defined(CONFIG_HUSH_INIT_VAR)
	hush_init_var ();
#endif

#ifdef CONFIG_AUTO_COMPLETE
	install_auto_complete();
#endif

#ifdef CONFIG_PREBOOT
	if ((p = getenv ("preboot")) != NULL) {
# ifdef CONFIG_AUTOBOOT_KEYED
		int prev = disable_ctrlc(1);	/* disable Control C checking */
# endif

# ifndef CONFIG_SYS_HUSH_PARSER
		run_command (p, 0);
# else
		parse_string_outer(p, FLAG_PARSE_SEMICOLON |
				    FLAG_EXIT_FROM_LOOP);
# endif

# ifdef CONFIG_AUTOBOOT_KEYED
		disable_ctrlc(prev);	/* restore Control C checking */
# endif
	}
#endif /* CONFIG_PREBOOT */

#if defined(CONFIG_BOOTDELAY) && (CONFIG_BOOTDELAY >= 0)
	s = getenv ("bootdelay");
	bootdelay = s ? (int)simple_strtol(s, NULL, 10) : CONFIG_BOOTDELAY;//计算bootdelay

	debug ("### main_loop entered: bootdelay=%d\n\n", bootdelay);

# ifdef CONFIG_BOOT_RETRY_TIME
	init_cmd_timeout ();
# endif	/* CONFIG_BOOT_RETRY_TIME */

#ifdef CONFIG_POST
	if (gd->flags & GD_FLG_POSTFAIL) {
		s = getenv("failbootcmd");
	}
	else
#endif /* CONFIG_POST */
#ifdef CONFIG_BOOTCOUNT_LIMIT
	if (bootlimit && (bootcount > bootlimit)) {
		printf ("Warning: Bootlimit (%u) exceeded. Using altbootcmd.\n",
		        (unsigned)bootlimit);
		s = getenv ("altbootcmd");
	}
	else
#endif /* CONFIG_BOOTCOUNT_LIMIT */
		s = getenv ("bootcmd");//得到bootcmd命令

	debug ("### main_loop: bootcmd=\"%s\"\n", s ? s : "");
//每10ms从控制台读取一个字符,并且显示倒计时。如果读取成功的话就继续执行main_loop代码,
//如果失败的话就执行下面的run_command(s,0)
 	if (bootdelay >= 0 && s && !abortboot (bootdelay)) {
# ifdef CONFIG_AUTOBOOT_KEYED
		int prev = disable_ctrlc(1);	/* disable Control C checking */
# endif

# ifndef CONFIG_SYS_HUSH_PARSER
		run_command (s, 0);//执行 bootcmd命令
# else
		parse_string_outer(s, FLAG_PARSE_SEMICOLON |
				    FLAG_EXIT_FROM_LOOP);
# endif

# ifdef CONFIG_AUTOBOOT_KEYED
		disable_ctrlc(prev);	/* restore Control C checking */
# endif
	}

# ifdef CONFIG_MENUKEY
	if (menukey == CONFIG_MENUKEY) {
	    s = getenv("menucmd");
	    if (s) {
# ifndef CONFIG_SYS_HUSH_PARSER
		run_command (s, 0);
# else
		parse_string_outer(s, FLAG_PARSE_SEMICOLON |
				    FLAG_EXIT_FROM_LOOP);
# endif
	    }
	}
#endif /* CONFIG_MENUKEY */
#endif	/* CONFIG_BOOTDELAY */

#ifdef CONFIG_AMIGAONEG3SE
	{
	    extern void video_banner(void);
	    video_banner();
	}
#endif

	/*
	 * Main Loop for Monitor Command Processing
	 */
#ifdef CONFIG_SYS_HUSH_PARSER
	parse_file_outer();
	/* This point is never reached */
	for (;;);
#else
	for (;;) {  //如果bootdelay时候有按键 就进入命令处理模式
#ifdef CONFIG_BOOT_RETRY_TIME
		if (rc >= 0) {
			/* Saw enough of a valid command to
			 * restart the timeout.
			 */
			reset_cmd_timeout();
		}
#endif
		len = readline (CONFIG_SYS_PROMPT);//从控制台读取一行数据,以回车为标志

		flag = 0;	/* assume no special flags for now */
		if (len > 0)
			z (lastcommand, console_buffer);
		else if (len == 0)
			flag |= CMD_FLAG_REPEAT;
#ifdef CONFIG_BOOT_RETRY_TIME
		else if (len == -2) {
			/* -2 means timed out, retry autoboot
			 */
			puts ("\nTimed out waiting for command\n");
# ifdef CONFIG_RESET_TO_RETRY
			/* Reinit board to run initialization code again */
			do_reset (NULL, 0, 0, NULL);
# else
			return;		/* retry autoboot */
# endif
		}
#endif

		if (len == -1)
			puts ("\n");
		else
			rc = run_command (lastcommand, flag);//处理这条命令

		if (rc <= 0) {
			/* invalid command or not repeatable, forget it */
			lastcommand[0] = 0;
		}
	}
#endif /*CONFIG_SYS_HUSH_PARSER*/
}   

到了这里整个的uboot流程已经走完了。从这里可以知道,uboot正式运行以后,实现的所有功能都是通过命令实现的,要继续分析的话,就要分析uboot的命令的实现了。

我们在下一篇文章里面讲述uboot命令是怎么实现的,kernel是怎么启动的。



你可能感兴趣的:(android)