- 西门子PLC S7-1200实例详解:涉及安川机器人通信、伺服电机控制及传感器数据轮询
DMQAfdLc
机器人大数据
西门子PLCS7-1200程序实例解析:电气编程者的技术之旅随着科技的飞速发展,工业自动化已成为现代制造业的核心。西门子PLC以其卓越的性能和广泛的应用,成为了工业控制领域的佼佼者。在本次技术博客中,我们将深入探讨西门子PLCS7-1200在博图版本V15下的应用实例,为电气编程者提供宝贵的学习借鉴。一、西门子PLC与安川机器人TCPIP通讯在工业自动化领域,PLC与机器人之间的通讯至关重要。西门
- 论文学习11:Boundary-Guided Camouflaged Object Detection
zl29
学习目标检测人工智能
代码来源GitHub-thograce/BGNet:Boundary-GuidedCamouflagedObjectDetection模块作用BGNet利用额外的目标相关边缘语义信息来引导COD任务的特征学习,从而强制模型生成能够突出目标结构的特征。这一机制有助于提高目标边界的精准定位,从而提升伪装目标的检测性能。模块结构BGNet的架构基于Res2Net-50,编码器提取多级特征,解码器通过EA
- 使用 MistralAI 平台进行开源模型托管与调用
VYSAHF
python
MistralAI是一个提供开放源码模型托管的平台,致力于帮助开发者更轻松地使用和管理开源模型。通过该平台,你可以方便地调用强大的深度学习模型,并将其集成到你的应用中。本文将带你了解如何利用MistralAI提供的服务来进行模型的托管和调用。技术背景介绍MistralAI的服务包括了如聊天模型和嵌入模型等,这些模型适用于聊天机器人、文本嵌入等各种场景。使用这些模型需要注册并获取一个有效的API密钥
- 【尚硅谷】鸿蒙应用开发 - 带源码课件
6v6-博客
harmonyos华为
【尚硅谷】鸿蒙应用开发-带源码课件课程描述本教程精心设计了一款精致而小巧的实战应用,贯穿整个学习过程,真正做到理论与实践相结合。课程内容从基础到高级,层层递进,全面覆盖鸿蒙应用开发的所有必备技能。通过图解抽象知识、丰富的案例和清晰的讲解,帮助学习者快速掌握鸿蒙应用开发的核心技术。课程亮点实战驱动:以实际应用案例为主线,贯穿整个学习过程,让学习更贴近实际开发需求。内容全面:从基础概念到高级技能,系统
- 部分标签数据集生成与过滤特定标签方法
阳光明媚大男孩
机器学习人工智能
完整代码总结这段代码的目的是通过构建一个部分标签学习(PartialLabelLearning,PLL)框架来生成一个包含部分标签的数据集,并且支持根据给定的标签列表对数据集进行筛选和过滤。代码包含了多个类和函数,主要分为以下几部分:数据预处理与加载:使用PyTorch和torchvision来加载CIFAR-10数据集,并对其进行标准化处理。部分标签数据集的生成:为每个样本生成多个候选标签,并模
- 使用spring data MongoDB对MongoDB进行简单CURD操作示例
其实我就是个萌新
springmongodbjava
本文章为作者个人学习笔记,仅作参考。1.application.properties配置spring.data.mongodb.database=[数据库名]spring.data.mongodb.host=localhost[主机名,本机:localhost]spring.data.mongodb.port=[数据库端口,默认:27017]2.根据数据库文档定义实体类:@RequiredArgs
- 暗光增强技术研究进展与产品落地综合分析(2023-2025)
AndrewHZ
深度学习新浪潮图像处理算法动态范围计算机视觉深度学习transformer暗光增强
一、引言暗光增强技术作为计算机视觉与移动影像领域的核心研究方向之一,近年来在算法创新、硬件适配及产品落地方面取得了显著进展。本文从技术研究与产业应用两个维度,系统梳理近三年(2023-2025)该领域的关键突破,并对比分析主流手机厂商的影像技术优劣势。二、暗光增强技术研究进展1.算法创新:从传统模型到深度学习(1)Retinex理论的深度结合清华与ETH联合提出的Retinexformer(202
- C++基础匿名对象,友元和常成员(const)
没有百宝袋的哆啦A梦
c++javajvm
目录学习内容:1.匿名对象2.友元2.1友元的引入2.2友元函数2.3友元类2.4友元的总结3.常成员(const)3.1常成员的引入3.2常成员函数3.3常对象3.4mutable关键字3.5常函数3.6关于C/C++中const的使用(面试题)学习内容:1.匿名对象1>所谓匿名对象,就是没有名字的对象,生命周期只在当前语句内,所以可以理解成时一个将亡值2>定义格式:直接调用类的构造函数3>使用
- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- 联邦学习算法安全优化与可解释性研究
智能计算研究中心
其他
内容概要本研究围绕联邦学习算法的安全性优化与模型可解释性增强展开系统性探索。首先,针对联邦学习中数据隐私泄露与模型性能损耗的固有矛盾,提出一种融合差分隐私与动态权重聚合的协同优化框架,通过分层加密机制降低敏感信息暴露风险。其次,引入可解释性算法(如LIME与SHAP)构建透明化决策路径,结合注意力机制实现特征贡献度的可视化映射,有效提升模型在医疗影像异常检测与金融欺诈识别场景中的可信度。此外,研究
- 下一代模型技术演进与场景应用突破
智能计算研究中心
其他
内容概要当前模型技术正经历多维度的范式跃迁,可解释性模型与自动化机器学习(AutoML)成为突破传统黑箱困境的核心路径。在底层架构层面,边缘计算与量子计算的融合重构了算力分配模式,联邦学习技术则为跨域数据协作提供了安全可信的解决方案。主流框架如TensorFlow和PyTorch持续迭代优化能力,通过动态参数压缩与自适应超参数调优策略,显著提升模型部署效率。应用层创新呈现垂直化特征,医疗诊断模型通
- H800核心性能优化技术
智能计算研究中心
其他
内容概要作为新一代AI加速卡的核心创新载体,H800通过异构计算架构与动态能效管理技术的协同设计,实现了从硬件底层到应用层的系统性优化。其技术突破聚焦于张量核心重构带来的计算密度提升、混合精度运算对资源利用率的增强,以及智能散热方案在复杂负载场景下的稳定性保障。这些创新不仅显著提升了30%以上的能效比,更通过精细化任务调度机制,解决了深度学习训练中高并发数据处理与模型参数同步的效率瓶颈。值得关注的
- TikTokenizer 项目常见问题解决方案
齐飞锴Timothea
TikTokenizer项目常见问题解决方案tiktokenizerOnlineplaygroundforOpenAPItokenizers项目地址:https://gitcode.com/gh_mirrors/ti/tiktokenizer项目基础介绍TikTokenizer是一个开源项目,主要用于文本处理,特别是将文本转化为可用于深度学习的格式。该项目是基于TensorFlow和Keras开发
- TypeScript语言的计算机视觉
苏墨瀚
包罗万象golang开发语言后端
使用TypeScript进行计算机视觉:一个现代化的探索引言随着人工智能和机器学习的快速发展,计算机视觉(ComputerVision)成为了一个极具活力的研究领域。计算机视觉旨在使计算机能够“看”和“理解”数字图像或视频中的内容。近年来,TypeScript作为一种现代化的编程语言,因其类型安全和更好的开发体验,逐渐在前端和后端开发中得到了广泛应用。本文将探讨如何使用TypeScript进行计算
- 日常学习日记——从练习代码中学习
梦想成为大牛呀
学习c语言笔记
日常学习日记——从练习代码中学习一、题目展示二、代码展示三、问题剖析四、冒泡排序4.1阐述4.2优缺点4.3逻辑阐述初学者记录不易,还请多多哦点赞支持呀!!也请各位大佬慷慨对我的问题提出指正如果对我的阐述有些疑问或者觉得博主写的不对,评论下来。主播觉得有道理一定会一一改正!!一、题目展示二、代码展示#include#defineMAX1000intmain(){intn,m=0;scanf("%d
- MyBatis 学习经验分享
吱屋猪_
mybatis学习经验分享
MyBatis是一个广泛使用的Java持久层框架,它为开发者提供了灵活、易用的数据库操作方式。与Hibernate等全自动化ORM(对象关系映射)框架不同,MyBatis采用了更精细的控制,允许开发者在SQL语句和Java对象之间进行映射。通过它,开发者可以直接编写SQL查询,灵活处理数据库操作,并且仍然享受到框架提供的简化工作流程。以下是我在学习MyBatis过程中的一些经验分享。1.理解MyB
- DeepSeek混合专家架构赋能智能创作
智能计算研究中心
其他
内容概要在人工智能技术加速迭代的当下,DeepSeek混合专家架构(MixtureofExperts)通过670亿参数的动态路由机制,实现了多模态处理的范式突破。该架构将视觉语言理解、多语言语义解析与深度学习算法深度融合,构建出覆盖文本生成、代码编写、学术研究等场景的立体化能力矩阵。其核心优势体现在三个维度:精准化内容生产——通过智能选题、文献综述自动生成等功能,将学术论文写作效率提升40%以上;
- 怎样用Java实现快速排序与找到数组中第k小的值?
上官美丽
java算法排序算法
大家好,今天我们来聊聊在Java中如何实现快速排序算法,以及如何利用这个排序算法来找到一个数组中的第k小的值。这两个主题在算法和数据结构的学习中都非常重要,理解这些内容对编写高效程序有很大的帮助!快速排序(QuickSort)是一种非常流行的排序算法,因为它在平均情况下表现得非常迅速。它的基本思路是通过一个“基准”值将数组分为两部分,然后递归对这两部分进行排序。听起来简单吧!接下来,我们深入了解一
- SvelteKit 最新中文文档教程(7)—— 构建和部署
前言Svelte,一个语法简洁、入门容易,面向未来的前端框架。从Svelte诞生之初,就备受开发者的喜爱,根据统计,从2019年到2024年,连续6年一直是开发者最感兴趣的前端框架No.1:Svelte以其独特的编译时优化机制著称,具有轻量级、高性能、易上手等特性,非常适合构建轻量级Web项目。为了帮助大家学习Svelte,我同时搭建了Svelte最新的中文文档站点。如果需要进阶学习,也可以入手我
- 人工智能之数学基础:数学对人工智能技术发展的作用
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能深度学习机器学习神经网络自然语言处理数学
本文重点数学是人工智能技术发展的基础,它提供了人工智能技术所需的数学理论和算法,包括概率论、统计学、线性代数、微积分、图论等等。本文将从以下几个方面探讨数学对人工智能技术发展的作用。概率论和统计学概率论和统计学是人工智能技术中最为重要的数学分支之一。概率论和统计学的应用范围非常广泛,包括机器学习、数据挖掘、自然语言处理、计算机视觉等领域。在人工智能技术中,概率论和统计学主要用于处理不确定性的问题,
- 人工智能之数学基础:线性子空间
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能深度学习线性代数线性子空间线性空间
本文重点在前面的课程中,我们学习了线性空间,本文我们我们在此基础上学习线性子空间。在应用中,线性子空间的概念被广泛应用于信号处理、机器学习、图像处理等领域。子空间的性质子空间是线性空间的一部分,它需要满足下面的性质:设V是数域F上的线性空间,W是V的一个非空子集。如果W对于V中的加法运算和数乘运算也构成F上的一个线性空间,则称W为V的线性子空间(或称向量子空间)。具体来说,设V是一个线性空间,W是
- 详解离线安装Python库
爱编程的喵喵
Python基础课程python离线安装requirements
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了详解离线安装Python库,希望能对
- YOLO11改进-模块-引入频率谱动态聚合模块FSDA 去除噪声
一勺汤
YOLOv11模型改进系列目标检测魔改模块YOLOYOLOv11YOLOv11改进改进
在图像去雾领域,深度学习在白天图像去雾方面成果显著,但夜间雾图研究较少。夜间雾图面临诸多挑战,其中包括雾、辉光和噪声因多个低强度有源彩色光源而具有复杂特性,以及模拟与真实数据的域差异导致的亮度问题。为解决这些,我们使用FSDA模块,处理频率不一致特性。FSDA先对频谱信息聚合,再计算通道权重并应用,最后映射回空间域,以此优化频谱信息,使模型更好处理复杂干扰。本文将其与YOLOv11相结合,增强YO
- java--(StringBuilder)
qq_44766305
java开发语言
上一节我们讲解了String,这一节我们来讲解StringBuilder。同样让我们带着疑问来学习:1.什么是StringBuilder?2.为什么要有StringBuilder?一、什么是StringBuilder?StringBuilder可以看成是一个容器,创建之后里面的内容是可变的。二、为什么要有StringBuilder?回答这个问题之前,让我们先看一个例子:publicclassdem
- Kotlin学习4.3:构造函数
CNwanku
Kotlin入门学习Kotlin移动开发
Kotlin学习4.3:构造函数主构函数this关键字次构函数主构函数在Kotlin中,构造函数用constructor关键字进行修饰,一个类可以有一个主构造函数和多个次构造函数。主构函数位于类头跟在类名之后,如果主构造函数没有任何注解或可见性修饰符(如public),constructor关键字可省略。主构函数定义的语法格式如下:class类名constructor([形参1,形参2,形参3])
- 基于多头注意机制的多尺度特征融合的GCN的序列数据(功率预测、故障诊断)模型及代码详解
清风AI
深度学习算法详解及代码复现人工智能神经网络深度学习pythoncondapippandas
GCN基础在深度学习领域中,图卷积网络(GCN)是一种强大的图数据处理工具。它将卷积操作扩展到图结构上,能够有效捕捉图中节点之间的关系信息。GCN的核心思想是通过聚合邻居节点的特征来更新目标节点的表示,这种局部聚合机制使得GCN能够学习到图的拓扑结构和节点属性。GCN的主要构成要素包括节点特征矩阵、邻接矩阵和卷积核。通过多次迭代,GCN可以逐步学习到图中节点的高阶表示,为后续的分类、预测等任务提供
- Kotlin学习-构造函数
liujun3512159
kotlinkotlin
Kotlin的构造函数分为主构造函数(primaryconstructor)和次级构造函数(secondaryconstructor);主构造函数1、在Kotlin中一个类可以有一个主构造函数和一个或多个次构造函数;如果不写构造函数会有一个默认空的构造函数//关键字类名类头(参数、主构造函数){类体}classMyTest{}vartest=MyTest()//使用默认的构造函数创建对象//空的类
- 【第9章】“基础工作流”怎么用?(图生图/局部重绘/VAE/更多基础工作流)ComfyUI基础入门教程
聚梦小课堂
ComfyUI基础入门课comfyui基础教程工作流教程AI绘画教程AI作画人工智能stablediffusion
引言学到这里,大家是不是会比较纠结,好像还在持续学习新的东西,未来还有多少基础的东西要学习,才能正常使用ComfyUI呢?这其实需要转变一个心态。AI绘画还处于一个快速迭代的过程,隔三岔五的就会有很多新技术、新模型出现,ComfyUI目前同样处于一个快速更新的阶段,从更新记录上也可以看到,几乎每一两天都会更新新版本。同样,生态的各种自定义节点也在持续更新。所以,不可能有个教程把所有未来会用到的知识
- YOLO魔改之频率分割模块(FDM)
清风AI
YOLO算法魔改系列YOLO人工智能计算机视觉目标检测python深度学习
目标检测原理目标检测是一种将目标分割和识别相结合的图像处理技术,旨在从图像中定位并识别特定目标。深度学习方法,如FasterR-CNN和YOLO系列,已成为主流解决方案。这些方法通常采用两阶段或单阶段策略,通过卷积神经网络(CNN)提取特征并进行分类和定位。在小目标检测中,为克服分辨率低和特征不明显的问题,模型设计中会特别注重特征融合和多尺度处理,以增强对小目标的感知能力。YOLOv8基础YOLO
- ev录屏损坏修复
qq_39541626
个人开发
ev录屏应该不正常关闭,录屏损坏淘宝买了一个软件,修复成功,需找一个当时时间段的正常录屏学习,然后高级修复。整体花费5毛钱
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =