spark checkpoint详解

checkpoint在spark中主要有两块应用:一块是在spark core中对RDD做checkpoint,可以切断做checkpoint RDD的依赖关系,将RDD数据保存到可靠存储(如HDFS)以便数据恢复;另外一块是应用在spark streaming中,使用checkpoint用来保存DStreamGraph以及相关配置信息,以便在Driver崩溃重启的时候能够接着之前进度继续进行处理(如之前waiting batch的job会在重启后继续处理)。

本文主要将详细分析checkpoint在以上两种场景的读写过程。

1,spark core中checkpoint分析

1.1,checkpoint的使用方法

使用checkpoint对RDD做快照大体如下:

sc.setCheckpointDir(checkpointDir.toString)
val rdd = sc.makeRDD(1 to 20, numSlices = 1)
rdd.checkpoint()

首先,设置checkpoint的目录(一般是hdfs目录),这个目录用来将RDD相关的数据(包括每个partition实际数据,以及partitioner(如果有的话))。然后在RDD上调用checkpoint的方法即可。

1.2,checkpoint写流程

可以看到checkpoint使用非常简单,设置checkpoint目录,然后调用RDD的checkpoint方法。针对checkpoint的写入流程,主要有以下四个问题:

Q1:RDD中的数据是什么时候写入的?是在rdd调用checkpoint方法时候吗?

Q2:在做checkpoint的时候,具体写入了哪些数据到HDFS了?

Q3:在对RDD做完checkpoint以后,对做RDD的本省又做了哪些收尾工作?

Q4:实际过程中,使用RDD做checkpoint的时候需要注意什么问题?

弄清楚了以上四个问题,我想对checkpoint的写过程也就基本清楚了。接下来将一一回答上面提出的问题。

A1:首先看一下RDD中checkpoint方法,可以看到在该方法中是只是新建了一个ReliableRDDCheckpintData的对象,并没有做实际的写入工作。实际触发写入的时机是在runJob生成改RDD后,调用RDD的doCheckpoint方法来做的。

A2:在经历调用RDD.doCheckpoint → RDDCheckpintData.checkpoint → ReliableRDDCheckpintData.doCheckpoint → ReliableRDDCheckpintData.writeRDDToCheckpointDirectory后,在writeRDDToCheckpointDirectory方法中可以看到:将作为一个单独的任务(RunJob)将RDD中每个parition的数据依次写入到checkpoint目录(writePartitionToCheckpointFile),此外如果该RDD中的partitioner如果不为空,则也会将该对象序列化后存储到checkpoint目录。所以,在做checkpoint的时候,写入的hdfs中的数据主要包括:RDD中每个parition的实际数据,以及可能的partitioner对象(writePartitionerToCheckpointDir)。

A3:在写完checkpoint数据到hdfs以后,将会调用rdd的markCheckpoined方法,主要斩断该rdd的对上游的依赖,以及将paritions置空等操作。

A4:通过A1,A2可以知道,在RDD计算完毕后,会再次通过RunJob将每个partition数据保存到HDFS。这样RDD将会计算两次,所以为了避免此类情况,最好将RDD进行cache。即1.1中rdd的推荐使用方法如下:

sc.setCheckpointDir(checkpointDir.toString)
val rdd = sc.makeRDD(1 to 20, numSlices = 1)
rdd.cache()
rdd.checkpoint()

1.3,checkpoint 读流程

在做完checkpoint后,获取原来RDD的依赖以及partitions数据都将从CheckpointRDD中获取。也就是说获取原来rdd中每个partition数据以及partitioner等对象,都将转移到CheckPointRDD中。

在CheckPointRDD的一个具体实现ReliableRDDCheckpintRDD中的compute方法中可以看到,将会从hdfs的checkpoint目录中恢复之前写入的partition数据。而partitioner对象(如果有)也会从之前写入hdfs的paritioner对象恢复。

总的来说,checkpoint读取过程是比较简单的。

2,spark streaming中checkpoint分析

2.1,streaming中checkpoint的使用方法

在streaming中使用checkpoint主要包含以下两点:设置checkpoint目录,初始化StreamingContext时调用getOrCreate方法,即当checkpoint目录没有数据时,则新建streamingContext实例,并且设置checkpoint目录,否则从checkpoint目录中读取相关配置和数据创建streamingcontext。

// Function to create and setup a new StreamingContext
def functionToCreateContext(): StreamingContext = { val ssc = new StreamingContext(...) // new context val lines = ssc.socketTextStream(...) // create DStreams ... ssc.checkpoint(checkpointDirectory) // set checkpoint directory ssc }
 
    
// Get StreamingContext from checkpoint data or create a new one
val context = StreamingContext.getOrCreate(checkpointDirectory, functionToCreateContext _)

2.2,streaming中checkpoint写流程

同样,针对streaming中checkpoint的写流程,主要有以下三个问题,并对此做相关解释。

Q1:streaming中checkpoint是在何时做的?

A1:在spark streaming中,jobGenerator会定期生成任务(jobGenerator.generateJobs)。在任务生成后将会调用doCheckpoint方法对系统做checkpoint。此外,在当前批次任务结束,清理metadata(jobGenerator.clearMetadata)时,也会调用doCheckpoint方法。

Q2:在streaming checkpoint过程中,具体都写入了哪些数据到checkpoint目录?

A2: 做checkpoint的主要逻辑基本都在JobGenerator.doCheckpoint方法中。

在该方法中,首先更新当前时间段需要做checkpoint RDD的相关信息,如在DirectKafkaInputDStream中,将已经生成的RDD信息的时间,topic,partition,offset等相关信息进行更新。

其次,通过checkpointWriter将Checkpoint对象写入到checkpoint目录中(CheckPoint.write → CheckpointWriteHandle)。至此,我们清楚了,写入到checkpoint目录的数据其实就是Checkpoint对象。

Checkpoint主要包含的信息如下:

val master = ssc.sc.master
val framework = ssc.sc.appName
val jars = ssc.sc.jars
val graph = ssc.graph
val checkpointDir = ssc.checkpointDir
val checkpointDuration = ssc.checkpointDuration
val pendingTimes = ssc.scheduler.getPendingTimes().toArray
val sparkConfPairs = ssc.conf.getAll

具体包括相关配置信息,checkpoint目录,DStreamGraph等。对于DStreamGraph,主要包含InputDstream以及outputStream等相关信息,从而我们可以看出定义应用相关的计算函数也被序列化保存到checkpoint目录中了。

Q3:  streaming checkpoint都有哪些坑?

A3:

从A2中可以看到,应用定义的计算函数也被序列化到checkpoint目录,当应用代码发生改变时,此时就没法从checkpoint恢复。个人感觉这是checkpoint在生产环境使用中碰到的最大障碍。

另外,当从checkpoint目录恢复streamingContext时,配置信息啥的也都是从checkpoint读取的(只有很少的一部分配置是reload的,具体见读流程),当重启任务时,新改变的配置就可能不生效,导致很奇怪的问题。

此外,broadcast变量在checkpoint中使用也受到限制(SPARK-5206)。

2.3,streaming中checkpoint读流程

在spark streaming任务从checkpoint恢复streamingContext时,将会触发对之前保存的checkpoint对象的读取动作。在StreamingContext的getOrCreate方法中,通过checkpoint.read方法从checkpoint目录中恢复之前保存的Checkpoint对象。一旦该对象存在,将使用Checkpoint创建streamingContext。于此同时,在StreamingContext中DStreamGraph的恢复借助之前保存的对象,并且调用restoreCheckpointData恢复之前生成而未计算的RDD,从而接着之前的进度进行数据处理。

另外需要注意的时,以下配置信息在使用checkpoint创建streamingContext时,这些配置信息是重新加载的。

val propertiesToReload = List(
"spark.yarn.app.id",
"spark.yarn.app.attemptId",
"spark.driver.host",
"spark.driver.bindAddress",
"spark.driver.port",
"spark.master",
"spark.yarn.jars",
"spark.yarn.keytab",
"spark.yarn.principal",
"spark.yarn.credentials.file",
"spark.yarn.credentials.renewalTime",
"spark.yarn.credentials.updateTime",
"spark.ui.filters",
"spark.mesos.driver.frameworkId")

3,小结

本文主要分析了checkpoint在spark core和streaming读写的基本过程,并且指出了在checkpoint使用中碰到一些坑。对于spark streaming,个人认为checkpoint在生产环境不适宜使用。

 

转载于:https://www.cnblogs.com/superhedantou/p/9004820.html

你可能感兴趣的:(spark checkpoint详解)