- LeetCode每日一题5月20日 LeetCode1371. 每个元音包含偶数次的最长子字符串
青日五月
LeetCode刷题记录字符串leetcode动态规划
问题描述:给你一个字符串s,请你返回满足以下条件的最长子字符串的长度:每个元音字母,即'a','e','i','o','u',在子字符串中都恰好出现了偶数次。来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/find-the-longest-substring-containing-vowels-in-even-counts示例1:输入:s="e
- C/C++教程 第十四章 —— MFC控件详解
余识-
C/C++实战入门到精通mfcc++c语言
注意本系列文章已升级、转移至我的自建站点中,本章原文为:MFC控件详解目录注意一、前言二、项目建立三、Comboxbox四、ListBox五、GroupBox六、Picturecontrol七、ScrollBar八、SpinControl九、ProgressControl十、hotkey十一、ListControl十二、TreeControl十三、TabControl一、前言通过前面两章的学习,现
- 【阅读总结】AlphaFold3 unedited version 通读 + 服务器使用总结
Lasgalena
论文阅读软件使用论文阅读服务器
省流:AlphaFold3能做什么:预测蛋白质、DNA、RNA与允许的配体/离子/共价修饰的复合物结构为什么要用AlphaFold3:有强大的泛化性和准确率,除了RNA结构略差于AIchemy_RNA2外,预测精度高于现有方法(包括Vina和RosettaFold-All-Atom)AlphaFold3怎么用:代码不开源,网站https://alphafoldserver.com/需注册使用,每日
- 神经网络|(三)线性回归基础知识
西猫雷婶
神经网络线性回归机器学习
【1】引言前序学习进程中,已经对简单神经元的工作模式有所了解,这种二元分类的工作机制,进一步使用sigmoid()函数进行了平滑表达。相关学习链接为:神经网络|(一)加权平均法,感知机和神经元-CSDN博客神经网络|(二)sigmoid神经元函数-CSDN博客实际上,上述表达模型的一个基本原则是:元素和对应的权重,线性相乘后再和阈值开关作对比,元素的综合影响在本质上是一个线性函数,类似于y=wx+
- 两数相加【力扣:中等难度】
牛哄哄的柯南
代码面试经典案例leetcode链表算法
title:两数相加【力扣:中等难度】tags:LeetCode题目给你两个非空的链表,表示两个非负的整数。它们每位数字都是按照逆序的方式存储的,并且每个节点只能存储一位数字。请你将两个数相加,并以相同形式返回一个表示和的链表。你可以假设除了数字0之外,这两个数都不会以0开头。示例1:输入:l1=[2,4,3],l2=[5,6,4]输出:[7,0,8]解释:342+465=807.示例2:输入:l
- 基于Python的豆瓣电影爬虫数据分析可视化设计与实现
计算机软件程序设计
Python爬虫Python程序设计数据分析python爬虫
【1】系统介绍1.研究背景随着互联网的快速发展,电影产业已经成为全球文化产业的重要组成部分。观众对电影的需求和兴趣日益增长,而在线电影平台如豆瓣电影(DoubanMovie)成为了用户获取电影信息、发表评论和评分的主要渠道之一。豆瓣电影不仅提供了丰富的电影资料,还拥有庞大的用户群体,这些用户生成的内容(UGC)为电影市场分析提供了宝贵的数据资源。然而,尽管豆瓣电影平台提供了大量的公开数据,但这些数
- Python实现itemCF协同过滤推荐算法并计算召回率、准确率、F1分数和覆盖率
计算机软件程序设计
机器学习python推荐算法开发语言
一个完整的Python实现,包括ItemCF协同过滤算法的实现以及召回率、准确率、F1分数和覆盖率等评估指标的计算。将使用Pandas进行数据处理,Scikit-learn进行相似度计算,并编写函数来生成推荐列表和评估模型性能。1.数据准备首先,需要准备数据。假设有一个用户-物品评分矩阵(可以是显式评分或隐式反馈),表示用户对不同酒店的喜好程度。这里可以使用Pandas来处理数据。importpa
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 基于深度学习的舆论分析与检测系统应用与研究
计算机软件程序设计
机器学习深度学习人工智能舆论检测
【1】系统介绍研究背景随着互联网技术的迅猛发展和社会媒体平台的普及,信息传播的速度和范围达到了前所未有的水平。这一变化不仅极大地丰富了人们的社交生活,也为社会科学研究提供了新的视角和工具。舆论分析作为社会科学研究的一个重要分支,其目的是通过收集和分析网络上的公众意见和情感倾向,来了解人们对特定事件或话题的看法和态度。近年来,基于深度学习的自然语言处理技术取得了显著进步,这为提高舆论分析的准确性和效
- 关于CSS中毛玻璃和滤镜使用总结
计算机软件程序设计
知识科普css
【1】毛玻璃毛玻璃效果(也称为磨砂玻璃效果)可以通过CSS的backdrop-filter属性来实现。这个属性允许你在背景上应用各种滤镜效果,从而创建出类似磨砂玻璃的效果。这种效果通常用于创建半透明背景下的模糊效果,使得背景图像或颜色变得柔和,同时保持前景内容的清晰可见。示例代码HTML结构CSS毛玻璃效果毛玻璃效果这是一个使用CSS创建的毛玻璃效果。CSS样式body,html{height:1
- 自然语言处理(NLP)-总览图学习
汤姆和佩琦
NLP自然语言处理学习人工智能
文章目录自然语言处理(NLP)-总览图学习1.一张总览图的学习1.语音学(Phonology)2.形态学(Morphology)3.句法学(Syntax)4.语义学(Semantics)5.推理(Reasoning)小结自然语言处理(NLP)-总览图学习转自《Python自然语言处理第二版》1.一张总览图的学习这张图片展示了一个自然语言处理的流程模型,涵盖了从语音分析到应用推理和执行的多个阶段,每
- Flink (十二) :Table API & SQL (一) 概览
Leven199527
Flinkflinksql大数据
ApacheFlink有两种关系型API来做流批统一处理:TableAPI和SQL。TableAPI是用于Scala和Java语言的查询API,它可以用一种非常直观的方式来组合使用选取、过滤、join等关系型算子。FlinkSQL是基于ApacheCalcite来实现的标准SQL。无论输入是连续的(流式)还是有界的(批处理),在两个接口中指定的查询都具有相同的语义,并指定相同的结果。TableAP
- 深度学习利用数据加载、预处理和增强数据提高模型的性能
weixin_30777913
人工智能深度学习
深度学习数据预处理是一个关键步骤,旨在提高模型的性能和准确性。通过数据加载、预处理和增强,可以显著提高深度学习模型的性能和准确性。在实际应用中,需要根据具体的数据和任务来选择合适的预处理和增强技术。以下将详细论述并举例说明如何加载、预处理和增强数据。一、数据加载在深度学习中,数据加载是第一步。这通常涉及到从各种数据源(如CSV文件、数据库、图像文件夹等)中读取数据。以DeepLearning4J(
- mha mysql 两台机器_MySQL主从复制(8)MHA实现主从高可用
日签君AIUX
mhamysql两台机器
一、MHA介绍1、MHA的作用MHA是实现MySQL高可用的一种成熟解决方案,可以在主从故障时自动完成主从切换,切换速度在30-60秒,并且可以最大程度的去保持数据一致性。MHA由管理节点(Manager)和数据节点(Node)组成,一套MHAManager可以管理多套MySQL集群。当Manager发现MySQLMaster出现故障时自动将一个拥有最新数据的Slave提升为Master,并让另外
- LeetCode HOT-100 分类总结
悬浮海
#LeetCodeHOT100leetcode算法HOT-100分类总结
文章目录二分搜索排序滑动窗口哈希表位运算前缀和双指针图二叉树回溯贪心:动态规划:背包问题:单调栈(辅助栈):并查集LRU缓存小技巧二分搜索【NO.4】LeetCodeHOT100—4.寻找两个正序数组的中位数【NO.17】LeetCodeHOT100—33.搜索旋转排序数组【NO.18】LeetCodeHOT100—34.在排序数组中查找元素的第一个和最后一个位置排序排序方法,如果可以确定数值的范
- 系统架构设计基础:概念与原则
Evaporator Core
系统架构设计师Python开发经验数据库系统设计师系统架构
系统架构设计基础:概念与原则引言系统架构设计是软件开发过程中至关重要的一环,它决定了系统的整体结构、组件之间的关系以及系统的可扩展性、可维护性和性能。系统架构设计师不仅需要具备扎实的技术功底,还需要对业务需求有深刻的理解,能够在复杂的需求中找到平衡点,设计出既满足当前需求又具备良好扩展性的系统架构。本文将深入探讨系统架构设计的基础概念与原则,帮助读者建立起系统架构设计的理论基础。第一章:系统架构设
- Python Web应用开发进阶:集成数据库与SQLAlchemy
Evaporator Core
Python开发经验python前端数据库
引言在上一篇《PythonWeb应用开发入门:从零搭建一个简单的Web应用》中,我们学习了如何使用Flask框架搭建一个简单的Web应用。然而,大多数Web应用都需要与数据库进行交互,以存储和检索数据。本文将深入探讨如何在Flask应用中集成数据库,并使用SQLAlchemy进行数据操作。一、数据库选择与安装1.1选择数据库在PythonWeb开发中,常用的数据库有SQLite、MySQL、Pos
- C++——内存管理
kiiila
C++c++
目录1.c++内存分布2.c语言中动态内存管理3.c++动态内存管理4.operatornew和operatordelete函数5.new和delete的实现原理6.定位new表达式(了解)7.malloc/free和new/delete的区别8.什么是内存泄漏,内存泄漏的危害1.c++内存分布内核空间用户代码不能读写栈向下增长内存映射段文件映射、动态库、匿名映射堆向上增长数据段或静态区全局数据、
- 读论文 Situated Instruction Following
MhZhou0412
人工智能深度学习python
研究背景:在传统的指令跟随范式中,代理独自在一个空房子里行动,导致语言使用既简单又人为“完整”。与此相反,我们提出了情境指令跟随(SIF),该方法拥抱真实世界通信中固有的不完全和模糊性,具有人的物理存在。情境指令的意义通过人类的过去行动和预期未来行为自然展开。在我们的设置中,指令具有以下特征:(1)模糊不清,(2)具有时间演变的意图,(3)可以通过代理的动态行动更精确地解释。SIF中的任务包括两个
- Java力扣题解:169 多数元素——投票法
早起之王
leetcodeleetcode
题目给定一个大小为n的数组,找到其中的多数元素。多数元素是指在数组中出现次数大于⌊n/2⌋的元素。你可以假设数组是非空的,并且给定的数组总是存在多数元素。来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/majority-element著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。分析这里的投票法,是以第一个元素为基准数,票
- LeetCode 3090.每个字符最多出现两次的最长子字符串
爱笑的coder
算法刷题-滑动窗口leetcode算法职场和发展
题目:给你一个字符串s,请找出满足每个字符最多出现两次的最长子字符串,并返回该子字符串的最大长度。思路:用一个数组代替hashset记录字符出现次数代码:classSolution{publicintmaximumLengthSubstring(Strings){char[]ch=s.toCharArray();intans=0;int[]record=newint[26];intleft=0;f
- 基于MySQL8.0安装部署MHA集群(一主两从)
收买神的欢心
mysql数据库大数据
写在前面之前搭建过MySQL5.7版本的MHA集群,因为一些需要,现进行MySQL8.0版本的MHA集群搭建,搭建步骤基本与5.7版本相似,所以某些测试部分、问题解决、安装包、mha的IP漂移配置文件可以参照我之前写的博文,但是有部分配置文件做了改动,且8.0版本的某些命令与5.7版本的也不尽相同,需要注意。基于MySQL5.7安装部署MHA集群(一主一从)可查看MySQL高可用集群搭建(一主一从
- 一步教你轻松实现--Word方括号打勾☑
韦_恩
windows日常使用总结word
开门见山,不说废话,本文介绍两种方法任君选择!1.方法1:在需要输入“方框打勾”符号的地方按着【Alt】键的同时,输入数字“9745”,输入完之后再松开【Alt】键,你会发现这个数字瞬间变成了“方框打勾”符号【如果没有就再按下回车键】。2.方法2:需要输入“方框打勾”符号的地方输入“2611”,然后按下【Alt+X】的组合键,即可看到“2611”瞬间变成了“方框打勾”符号。alt+x键后:以上两种
- 论文阅读:DeepFake-Adapter: Dual-Level Adapter for DeepFake Detection(Deepfake模型快速调参)
海拉鲁的小厨娘
读论文论文阅读
一、论文信息论文名称:DeepFake-Adapter:Dual-LevelAdapterforDeepFakeDetection作者团队:项目主页:https://github.com/rshaojimmy/DeepFake-Adapter(代码暂未开源)二、动机与创新动机:目前的deepfake检测模型泛化能力差,将其归因于过拟合于低级的伪造模式,现有的deepfake检测方法仅关注低级别的伪
- [Qt]常用控件介绍-显示类控件-QLabel、QLCDNumber、QProgressBar、QCalendarWidget控件
北顾南栀倾寒
QtC++c++qt开发语言
目录1.Label控件属性介绍三种文本格式的设置应用编辑图片与自动拉伸应用QLable伙伴设置2.LCDNumber控件属性Demo:倒计时程序多线程实现倒计时程序3.ProgressBar控件属性Demo:定时器--进度条随机增长Qt头文件的前置声明4.CalendarWidget控件属性重要的信号1.Label控件可以用来显示文本和图片内容,内部含有许多功能,但是在运行后只能用于显示文本和实现
- MHA架构部署
凰玥
MySQLmysql
一、**简介MHA(MasterHA)是一款开源的MySQL的高可用程序,它为MySQL主从复制架构提供了automatingmasterfailover功能。MHA在监控到master节点故障时,会提升其中拥有最新数据的slave节点成为新的master节点,在此期间,MHA会通过于其它从节点获取额外信息来避免一致性方面的问题。MHA还提供了master节点的在线切换功能,即按需切换master
- 震惊!996加班写教程?OUT了!我用Python+AI,一键自动生成,效率提升100倍!
lizhijianwill
人工智能python开发语言改行学itjavajavascript
导语:你是否还在为了撰写技术教程而苦苦挣扎?是否还在996的工位上,熬夜爆肝,只为输出一篇高质量的技术文档?醒醒吧!这个时代变了!今天,我就要告诉你一个颠覆传统的秘密武器,让你彻底告别低效的手工教程编写模式,拥抱AI,解放生产力,让效率飞起来!时代焦虑:AI浪潮来袭,你还在用“石器时代”的方法写教程?2024年,AI技术已经渗透到我们生活的方方面面。“AI智能体”、“思维链”、“生产力革命”这些词
- 基于Python的自然语言处理系列(2):Word2Vec(负采样)
会飞的Anthony
自然语言处理人工智能信息系统自然语言处理word2vec人工智能
在本系列的第二篇文章中,我们将继续探讨Word2Vec模型,这次重点介绍负采样(NegativeSampling)技术。负采样是一种优化Skip-gram模型训练效率的技术,它能在大规模语料库中显著减少计算复杂度。接下来,我们将通过详细的代码实现和理论讲解,帮助你理解负采样的工作原理及其在Word2Vec中的应用。1.Word2Vec(负采样)原理1.1负采样的背景在Word2Vec的Skip-g
- 如何运用python爬虫获取大型资讯类网站文章,并同时导出pdf或word格式文本?
大懒猫软件
深度学习python网络爬虫自然语言处理
这里,我们以比较知名的商业新知网站https://www.shangyexinzhi.com/为例进行代码编写,下面进行代码应用思路。第一部分,分析网站结构首先,我们来分析,要使用Python技术分析一个网站的结构,通常可以通过以下步骤实现:获取网站的HTML内容:使用requests库来获取网站的HTML源代码。解析HTML内容:使用BeautifulSoup库来解析HTML,提取网站的结构信息
- 大模型GUI系列论文阅读 DAY4:《PREDICT: Multi-Agent-based Debate Simulation for Generalized Hate Speech Detecti》
feifeikon
论文阅读
摘要虽然已经提出了一些公共基准用于训练仇恨言论检测模型,但这些基准之间的标注标准差异为模型的泛化学习带来了挑战,限制了其适用性。先前的研究提出了通过数据整合或扩充来泛化模型的方法,但在克服数据集之间的标注标准差异方面仍然存在局限性。为了解决这些挑战,我们提出了PREDICT,一种基于多代理(multi-agent)概念的仇恨言论检测新框架。PREDICT包括两个阶段:(1)PRE(基于视角的推理)
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$