Reids 之用 scan 模糊匹配 key

在 redis 实际使用中,会遇到一个问题:如何从海量的 key 中找出满足特定前缀的 key 列表来?

1. 不要使用 keys*

redis 提供了一个简单暴力的指令 keys 用来列出所有满足特定正则字符串规则的 key。

keys xxx*

这个指令有致命的弊端,在实际环境中最好不要使用:

这个指令没有 offset、limit 参数,是要一次性吐出所有满足条件的 key,由于 redis 是单线程的,其所有操作都是原子的,而 keys 算法是遍历算法,复杂度是 O(n),如果实例中有千万级以上的 key,这个指令就会导致 Redis 服务卡顿,所有读写 Redis 的其它的指令都会被延后甚至会超时报错,可能会引起缓存雪崩甚至数据库宕机。

我们可以通过配置设置禁用这些命令,在 redis.conf 中,在 SECURITY 这一项中,我们新增以下命令:

rename-command flushall ""
rename-command flushdb ""
rename-command config ""
rename-command keys ""

另外,对于FLUSHALL命令,需要设置配置文件中appendonly no,否则服务器是无法启动。

Redis 为了解决这个问题,它在 2.8 版本中加入了scan。scan 相比 keys 具备有以下特点:

  1. 复杂度虽然也是 O(n),但是它是通过游标分步进行的,不会阻塞线程;
  2. 提供 limit 参数,可以控制每次返回结果的最大条数,limit 只是一个 hint,返回的结果可多可少;
  3. 同 keys 一样,它也提供模式匹配功能;
  4. 服务器不需要为游标保存状态,游标的唯一状态就是 scan 返回给客户端的游标整数;
  5. 返回的结果可能会有重复,需要客户端去重复,这点非常重要;
  6. 遍历的过程中如果有数据修改,改动后的数据能不能遍历到是不确定的;
  7. 单次返回的结果是空的并不意味着遍历结束,而要看返回的游标值是否为零;

2. scan 使用

SCAN 命令及其相关的 SSCAN 命令、 HSCAN 命令和 ZSCAN 命令都用于增量地迭代(incrementally iterate)一集元素(a collection of elements):

  • SCAN 命令用于迭代当前数据库中的数据库键。
  • SSCAN 命令用于迭代集合键中的元素。
  • HSCAN 命令用于迭代哈希键中的键值对。
  • ZSCAN 命令用于迭代有序集合中的元素(包括元素成员和元素分值)

scan 参数提供了三个参数,第一个是 cursor 整数值,第二个是 key 的正则模式,第三个是遍历的 limit hint。第一次遍历时,cursor 值为 0,然后将返回结果中第一个整数值作为下一次遍历的 cursor。一直遍历到返回的 cursor 值为 0 时结束。

127.0.0.1:6379> scan 0 match key99* count 1000
1) "13976"
2)  1) "key9911"
    2) "key9974"
    3) "key9994"
    4) "key9910"
    5) "key9907"
    6) "key9989"
127.0.0.1:6379> scan 13976 match key99* count 1000
1) "1996"
2)  1) "key9982"
    2) "key9997"
    3) "key9963"
    4) "key996"
    5) "key9912"
127.0.0.1:6379> scan 1996 match key99* count 1000
1) "12594"
2) 1) "key9939"
   2) "key9941"
   3) "key9967"

从上面的过程可以看到虽然提供的 limit 是 1000,但是返回的结果只有 10 个左右。因为这个 limit 不是限定返回结果的数量,而是限定服务器单次遍历的字典槽位数量(约等于)。

Jedis scan方法的封装

public static Set getKeysByPattern(String pattern) {
    Jedis jedis = init();
    Set<String> retSet = new HashSet<>();
    int scanCount = 20;
    String scanRet = "0";
    try {
        do {
            ScanParams scanParams = new ScanParams();
            scanParams.match(pattern + "*");
            scanParams.count(scanCount);
            ScanResult<String> scanResult = jedis.scan(scanRet, scanParams);
            scanRet = scanResult.getStringCursor();
            retSet.addAll(scanResult.getResult());
        } while (!scanRet.equals("0"));
    } catch (Exception e) {
        e.printStackTrace();
    } finally {
        if (null != jedis) {
            relase(jedis);
        }
    }
    return retSet;
}

4. 相关原理

注:以下内容摘自作者老钱的大海捞针 —— Scan

字典的结构

在 Redis 中所有的 key 都存储在一个很大的字典中,这个字典的结构和 Java 中的 HashMap 一样,是一维数组 + 二维链表结构,第一维数组的大小总是 2^n(n>=0),扩容一次数组大小空间加倍,也就是 n++。

Reids 之用 scan 模糊匹配 key_第1张图片

scan 指令返回的游标就是第一维数组的位置索引,我们将这个位置索引称为槽 (slot)。如果不考虑字典的扩容缩容,直接按数组下标挨个遍历就行了。limit 参数就表示需要遍历的槽位数,之所以返回的结果可能多可能少,是因为不是所有的槽位上都会挂接链表,有些槽位可能是空的,还有些槽位上挂接的链表上的元素可能会有多个。每一次遍历都会将 limit 数量的槽位上挂接的所有链表元素进行模式匹配过滤后,一次性返回给客户端。

scan 遍历顺序

scan 的遍历顺序非常特别。它不是从第一维数组的第 0 位一直遍历到末尾,而是采用了高位进位加法来遍历。之所以使用这样特殊的方式进行遍历,是考虑到字典的扩容和缩容时避免槽位的遍历重复和遗漏。

高位进位法从左边加,进位往右边移动,同普通加法正好相反。但是最终它们都会遍历所有的槽位并且没有重复。

字典扩容

Java 中的 HashMap 有扩容的概念,当 loadFactor 达到阈值时,需要重新分配一个新的 2 倍大小的数组,然后将所有的元素全部 rehash 挂到新的数组下面。rehash 就是将元素的 hash 值对数组长度进行取模运算,因为长度变了,所以每个元素挂接的槽位可能也发生了变化。又因为数组的长度是 2^n 次方,所以取模运算等价于位与操作。

a mod 8 = a & (8-1) = a & 7
a mod 16 = a & (16-1) = a & 15
a mod 32 = a & (32-1) = a & 31

这里的 7, 15, 31 称之为字典的 mask 值,mask 的作用就是保留 hash 值的低位,高位都被设置为 0。

接下来我们看看 rehash 前后元素槽位的变化。

假设当前的字典的数组长度由 8 位扩容到 16 位,那么 3 号槽位 011 将会被 rehash 到 3 号槽位和 11 号槽位,也就是说该槽位链表中大约有一半的元素还是 3 号槽位,其它的元素会放到 11 号槽位,11 这个数字的二进制是 1011,就是对 3 的二进制 011 增加了一个高位 1。

抽象一点说,假设开始槽位的二进制数是 xxx,那么该槽位中的元素将被 rehash 到 0xxx 和 1xxx(xxx+8) 中。 如果字典长度由 16 位扩容到 32 位,那么对于二进制槽位 xxxx 中的元素将被 rehash 到 0xxxx 和 1xxxx(xxxx+16) 中。

对比扩容缩容前后的遍历顺序

Reids 之用 scan 模糊匹配 key_第2张图片

观察这张图,我们发现采用高位进位加法的遍历顺序,rehash 后的槽位在遍历顺序上是相邻的。

假设当前要即将遍历 110 这个位置 (橙色),那么扩容后,当前槽位上所有的元素对应的新槽位是 0110 和 1110(深绿色),也就是在槽位的二进制数增加一个高位 0 或 1。这时我们可以直接从 0110 这个槽位开始往后继续遍历,0110 槽位之前的所有槽位都是已经遍历过的,这样就可以避免扩容后对已经遍历过的槽位进行重复遍历。

再考虑缩容,假设当前即将遍历 110 这个位置 (橙色),那么缩容后,当前槽位所有的元素对应的新槽位是 10(深绿色),也就是去掉槽位二进制最高位。这时我们可以直接从 10 这个槽位继续往后遍历,10 槽位之前的所有槽位都是已经遍历过的,这样就可以避免缩容的重复遍历。不过缩容还是不太一样,它会对图中 010 这个槽位上的元素进行重复遍历,因为缩融后 10 槽位的元素是 010 和 110 上挂接的元素的融合。

渐进式 rehash

Java 的 HashMap 在扩容时会一次性将旧数组下挂接的元素全部转移到新数组下面。如果 HashMap 中元素特别多,线程就会出现卡顿现象。Redis 为了解决这个问题,它采用渐进式 rehash。

它会同时保留旧数组和新数组,然后在定时任务中以及后续对 hash 的指令操作中渐渐地将旧数组中挂接的元素迁移到新数组上。这意味着要操作处于 rehash 中的字典,需要同时访问新旧两个数组结构。如果在旧数组下面找不到元素,还需要去新数组下面去寻找。

scan 也需要考虑这个问题,对与 rehash 中的字典,它需要同时扫描新旧槽位,然后将结果融合后返回给客户端。

参考资料

  • SCAN 命令的基本用法
  • 大海捞针 —— Scan

你可能感兴趣的:(reids)