You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees (clockwise). Note: You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation. Example 1: Given input matrix = [ [1,2,3], [4,5,6], [7,8,9] ], rotate the input matrix in-place such that it becomes: [ [7,4,1], [8,5,2], [9,6,3] ] |
给定一个 n × n 的二维矩阵表示一个图像。 将图像顺时针旋转 90 度。 说明: 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。 示例 1: 给定 matrix = [ [1,2,3], [4,5,6], [7,8,9] ], 原地旋转输入矩阵,使其变为: [ [7,4,1], [8,5,2], [9,6,3] ] 示例 2: 给定 matrix = [ [ 5, 1, 9,11], [ 2, 4, 8,10], [13, 3, 6, 7], [15,14,12,16] ], 原地旋转输入矩阵,使其变为: [ [15,13, 2, 5], [14, 3, 4, 1], [12, 6, 8, 9], [16, 7,10,11] ] |
思路:
第一种方法:先按 主对角线旋转矩阵,然后每一行元素顺序逆置(或者按副对角线旋转,然后每列元素逆置)。逆时针旋转类似
1 2 3 1 4 7 7 4 1
4 5 6 --> 2 5 8 --> 8 5 2
7 8 9 3 6 9 9 6 3
class Solution {
public:
void rotate(vector>& matrix) {
int n=matrix.size();
for(int i=0;i
第二种方法:计算旋转后的新位置,然后再计算下一个新位置,第四个位置又变成当前位置了,所以这个方法每次循环换四个数字,如下所示:
1 2 3 7 2 1 7 4 1
4 5 6 --> 4 5 6 --> 8 5 2
7 8 9 9 8 3 9 6 3
class Solution {
public:
void rotate(vector > &matrix) {
int n = matrix.size();
for (int i = 0; i < n / 2; ++i) {
for (int j = i; j < n - 1 - i; ++j) {
int tmp = matrix[i][j];
matrix[i][j] = matrix[n - 1 - j][i];
matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j];
matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i];
matrix[j][n - 1 - i] = tmp;
}
}
}
};