Python:图像拼接 - 计算机视觉

文章目录

  • 一、图像拼接介绍
    • 1.1 基于区域相关拼接算法
    • 1.2 基于特征相关拼接算法
  • 二、算法原理
    • 2.1 RANSAC算法
    • 2.2 图像配准
    • 2.3 图像融合
  • 三、实验过程
    • 3.1 代码
    • 3.2 实验结果

一、图像拼接介绍

图像拼接目前有很多算法,图像拼接的质量,主要依赖于图像的配准程度,因此通过不同的图像匹配方式将算法分为以下两种:

1.1 基于区域相关拼接算法

该算法比较传统和普遍,从待拼接图像的灰度值出发,对待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法计算其灰度值的差异(1.通过累加各点灰度的差值,2.计算两块区域的对应像素点灰度值的相关系数,相关系数越大,则两块图像的匹配程度越高,3.两者中计算相关系数的效果更好)。对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待拼接图像重叠区域的范围和位置,从而实现图像拼接。
也可以通过FFT 变换将图像由时域变换到频域,然后再进行配准。对位移量比较大的图像,可以先校正图像的旋转,然后建立两幅图像之间的映射关系。

1.2 基于特征相关拼接算法

于特征的配准方法不是直接利用图像的像素值,而是通过像素导出图像的特征,然后以图像特征为标准,对图像重叠部分的对应特征区域进行搜索匹配,该类拼接算法有比较高的健壮性和鲁棒性。
在两幅图像对应的特征集中利用特征匹配算法尽可能地将存在对应关系的特征对选择出来。一系列的图像分割技术都被用到特征的抽取和边界检测上。

二、算法原理

2.1 RANSAC算法

RANSAC算法通过反复取样,也就是从整个观测数据中随机抽一些数据估算模型参数之后看和所有数据误差有多大,然后取误差最小视为最好以及分离内群与离群数据。。

2.2 图像配准

1.提取两张图片的sift特征点。
2.对两张图片的特征点进行匹配。
3.匹配后,仍有很多错误点,用RANSAC的改进算法进行特征点对的筛选。筛选后的特征点基本能够异议一 一对应。
4.使用DLT算法,将剩下的特征点对进行透视变换矩阵的估计。
5.因为得到的透视变换矩阵是基于全局特征点对进行的,即一个刚性的单应性矩阵完成配准。为提高配准的精度,Apap将图像切割成无数多个小方块,对每个小方块的变换矩阵逐一估计。

2.3 图像融合

融合目的在于拼缝消除, Multi-Band能够达到比较好的融合效果,但是效率低,采用Laplacian(拉普拉斯)金字塔,通过对相邻两层的高斯金字塔进行差分,将原图分解成不同尺度的子图,对每一个之图进行加权平均,得到每一层的融合结果,最后进行金字塔的反向重建,得到最终融合效果过程。

三、实验过程

3.1 代码

from pylab import *
from numpy import *
from PIL import Image

# If you have PCV installed, these imports should work
from PCV.geometry import homography, warp
from PCV.localdescriptors import sift

"""
This is the panorama example from section 3.3.
"""

# set paths to data folder
featname = ['D:/PyCharm/PanoromaStitching/A/' + str(i + 1) + '.sift' for i in range(5)]
imname = ['D:/PyCharm/PanoromaStitching/A/' + str(i + 1) + '.jpg' for i in range(5)]

# extract features and match
l = {}
d = {}
for i in range(5):
    sift.process_image(imname[i], featname[i])
    l[i], d[i] = sift.read_features_from_file(featname[i])

matches = {}
for i in range(4):
    matches[i] = sift.match(d[i + 1], d[i])

# visualize the matches (Figure 3-11 in the book)
for i in range(4):
    im1 = array(Image.open(imname[i]))
    im2 = array(Image.open(imname[i + 1]))
    figure()
    sift.plot_matches(im2, im1, l[i + 1], l[i], matches[i], show_below=True)


# function to convert the matches to hom. points
def convert_points(j):
    ndx = matches[j].nonzero()[0]
    fp = homography.make_homog(l[j + 1][ndx, :2].T)
    ndx2 = [int(matches[j][i]) for i in ndx]
    tp = homography.make_homog(l[j][ndx2, :2].T)

    # switch x and y - TODO this should move elsewhere
    fp = vstack([fp[1], fp[0], fp[2]])
    tp = vstack([tp[1], tp[0], tp[2]])
    return fp, tp


# estimate the homographies
model = homography.RansacModel()

fp, tp = convert_points(1)
H_12 = homography.H_from_ransac(fp, tp, model)[0]  # im 1 to 2

fp, tp = convert_points(0)
H_01 = homography.H_from_ransac(fp, tp, model)[0]  # im 0 to 1

tp, fp = convert_points(2)  # NB: reverse order
H_32 = homography.H_from_ransac(fp, tp, model)[0]  # im 3 to 2

tp, fp = convert_points(3)  # NB: reverse order
H_43 = homography.H_from_ransac(fp, tp, model)[0]  # im 4 to 3

# warp the images
delta = 700  # for padding and translation

im1 = array(Image.open(imname[1]), "uint8")
im2 = array(Image.open(imname[2]), "uint8")
im_12 = warp.panorama(H_12, im1, im2, delta, delta)

im1 = array(Image.open(imname[0]), "f")
im_02 = warp.panorama(dot(H_12, H_01), im1, im_12, delta, delta)

im1 = array(Image.open(imname[3]), "f")
im_32 = warp.panorama(H_32, im1, im_02, delta, delta)

im1 = array(Image.open(imname[4]), "f")
im_42 = warp.panorama(dot(H_32, H_43), im1, im_32, delta, 2 * delta)

figure()

imshow(array(im_42, "uint8"))
axis('off')

show()


3.2 实验结果

Python:图像拼接 - 计算机视觉_第1张图片

分析
1、固定位置拍摄的图像的拼接准确率更高,对于近景由于位置改变和角度变换原因,导致匹配和拼接都不全面,因此误差较大。
2、相比景深丰富的场景,景深单一的场景拼接缝更明显;据我分析是景深单一的图像组特征匹配点也较少,所以导致拼接的时候比较生硬。

你可能感兴趣的:(Python:图像拼接 - 计算机视觉)