- 语言大模型综述
Paper:ASurveyofLargelanguageModels目录Paper:ASurveyofLargelanguageModels综述概要LLM关键技术规模定律(ScalingLaws)预训练与微调对齐调优(AlignmentTuning)外部工具集成GPT系列模型的技术演进模型检查点和APIPre-Training数据准备和处理数据准备数据预处理数据调度架构EmergentArchit
- PyTorch:Dropout 操作 torch.nn.Dropout()
sweettea~
Pythonpytorch深度学习
torch.nn.Dropout()是PyTorch中对Dropout层的其中一个实现,该函数底层调用torch.nn.functional.dropout();1、torch.nn.Dropout(p=0.5,inplace=False)其作用是,在training模式下,基于伯努利分布抽样,以概率p对张量input的值随机置0;training模式中,对输出以1/(1-p)进行scaling,
- 微软:LLM训练数据组织框架DELT
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:DataEfficacyforLanguageModelTraining来源:arXiv,2506.21545摘要数据是语言模型(LM)训练的基础。最近的研究一直致力于数据效率,其目的是通过选择训练数据的最小或最优子集来最大限度地提高性能。数据过滤、采样和选择等技术在这一领域起着至关重要的作用。为了补充这一点,我们定义了数据效能,它侧重于通过优化训练数据的组织来最大限度地提高性能,目前尚未得
- Python Day44
别勉.
python机器学习python开发语言
Task:1.预训练的概念2.常见的分类预训练模型3.图像预训练模型的发展史4.预训练的策略5.预训练代码实战:resnet181.预训练的概念预训练(Pre-training)是指在大规模数据集上,先训练模型以学习通用的特征表示,然后将其用于特定任务的微调。这种方法可以显著提高模型在目标任务上的性能,减少训练时间和所需数据量。核心思想:在大规模、通用的数据(如ImageNet)上训练模型,学习丰
- 【大模型学习 | BLIP2原理】
九年义务漏网鲨鱼
人工智能深度学习语言模型多模态大模型
BLIP-2:BootstrappingLanguage-ImagePre-trainingwithFrozenImageEncodersandLargeLanguageModels目前(2023)的图文模型都是基于端到端训练方式,大规模的模型和数据集导致了在预训练过程需要的大量计算。作者提出一种从离线、梯度冻结的图像、语言模型中提升图文的预训练模型。为了联系两个不同模态预训练模型,作者提出一种使
- 【大模型学习 | BLIP原理】
九年义务漏网鲨鱼
pytorch人工智能深度学习大模型多模态
BLIP:BootstrappingLanguage-ImagePre-trainingforUnifiedVision-LanguageUnderstandingandGeneration作者指出,现有的视觉-语言预训练(Vision-LanguagePre-training,VLP)模型在语言理解与生成任务上难以同时取得优异表现:一方面,基于编码器(encoder-based)的模型在生成任务
- 推荐系统的视频特征-视频关键帧特征提取与向量生成
总体流程概览视频文件(.mp4)↓关键帧抽取(FFmpeg/SceneDetect)↓帧图像(.jpg)↓图像模型提取特征(CLIP/CNN/ViT)↓多帧聚合成视频向量(均值池化等)↓向量库/推荐系统模型特征提取推荐:使用OpenAI的CLIP模型CLIP(ContrastiveLanguage-ImagePretraining)适合推荐系统做跨模态建模,对视频封面帧或场景帧提取效果非常好。✅1
- [pytorch] pytorch_model.bin 和 training_args.bin 的区别
心心喵
pytorch深度学习pytorch神经网络
pytorch_model.bin和training_args.bin是与PyTorch框架和训练过程相关的两个文件。pytorch_model.bin:这是保存了PyTorch模型的二进制文件。在使用PyTorch进行深度学习训练时,经过训练的模型会被保存为这个文件,其中包含了模型的权重参数。这个文件可以被加载到PyTorch中,以便进行推理、评估或继续训练。training_args.bin:
- 星际争霸多智能体挑战赛(SMAC)
资源存储库
多智能体强化学习人工智能
目录TheStarCraftMulti-AgentChallenge星际争霸多智能体挑战赛Abstract摘要1Introduction1引言2RelatedWork2相关工作3Multi-AgentReinforcementLearning3多智能体强化学习Dec-POMDPs12-POMDPs(十二月-POMDP)Centralisedtrainingwithdecentralisedexec
- 【面试宝典】【大模型入门】【模型微调】
曾小文
人工智能深度学习机器学习
面试热点科普:监督微调vs无监督微调,有啥不一样?在大模型时代(比如BERT、GPT)里,我们经常听到“预训练+微调”的范式。但你可能会疑惑——监督微调、无监督微调,到底有啥区别?用的场景一样吗?今天这篇,带你5分钟搞懂这对“孪生兄弟”的异同✅1.术语定义名称定义说明预训练(Pretraining)在大规模通用数据上训练模型,学习“通用知识”,比如语言规律、语义表示。微调(Fine-tuning)
- TeleScan PE
fei_sun
计算机网络单片机stm32嵌入式硬件
目录物理层深度剖析通道结构信号完整性关键技术链路训练(LinkTraining)协议层核心技术TLP(事务层包)结构虚拟通道管理原子操作(PCIe5.0+)硬件实现关键FPGA实现方案信号完整性设计规范总结:PCIe技术本质TeleScanPE是一个免费的PCIExpress/NVMe配置空间读/写实用程序,允许用户扫描、解码、显示和写入PCIExpress/NVMe配置空间寄存器。windows
- Oracle第五章PL/SQL基础
ZShuiShen
oraclesql数据库
Homework-Chapter55.7.1实训Practicaltraining1:PL/SQL基础Basics〖实训目的Trainingpurpose〗(1)学会PL/SQL基本语法;LearnbasicPL/SQLsyntax(2)理解PLSQL语句块的构成。UnderstandthecompositionofPL/SQLstatementblocks〖实训内容Trainingcontent
- AWS SAA-C03考试经过
nianjian
aws云计算
为啥要考?齁贵的。SB公司评绩效要用;放简历里面增加一点信任吧。考试流程:1,先注册个账号链接:https://www.aws.training/certification这里填写姓名时注意,须与参加考试时要求出示的有效身份证件上的姓名一致,否则将无法考试。就是姓名和你身份证一致,当然你身份证上是中文张三,这里最好填写拼音,如名字san,姓zhang。这样就和你之后填写信用卡号对应实体卡上的名字一
- 【腾讯云】考个证...大数据开发工程师认证
runzhliu
腾讯云
作为一个大数据行业的从业者,考个腾讯云大数据开发工程师认证总比考个消防证easy吧…?关于考这个认证的意义其实主要在于全面复习一下大数据相关的知识点,另外有个腾讯云的认证,也许大概也会对你找工作有点帮助的吧?下面是报名的链接和考试大纲。https://cloud.tencent.com/edu/training/cert/detail?type=Big_Data既然是考试,大家肯定会比较关心考试资
- 【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?
985小水博一枚呀
深度学习学习笔记深度学习学习笔记人工智能
【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?文章目录【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?前言✅一、提高模型性能✅二、降低训练成本✅三、迁移学习能力强✅四、模型结构验证过,可靠性高✅五、促进多模态和复杂任务发展总结如何将自己的遥感数据(输入波段为17)用作DenseNet121
- Qwen2.5:模型训练和推理核心参数介绍
艾墨舟启航
大模型实战大模型Trainer参数介绍
详细介绍:https://mp.weixin.qq.com/s/0zLHA_VQkD3tf0BSzjd7Ag一、remove_columns删除选定的列作用:去掉原始数据集里面的字段以及对应的数据。原因:如果不去掉,在进行微调时,模型就会将数据集原始字段和新加的字段一起输入到模型,导致格式与期望的不一致。二、TrainingArguments核心参数2.1基础训练设置参数介绍output_dir(
- 【论文解读】s3: 仅 2.4K 数据即可 RL 训练Search Agent
1stauthro:PatrickJiangpaper:[2505.14146]s3:YouDon’tNeedThatMuchDatatoTrainaSearchAgentviaRLcode:pat-jj/s3:s3-EfficientYetEffectiveSearchAgentTrainingviaRLforRAG5.总结(结果先行)s3框架以其“解耦搜索与生成、仅训练搜索代理、采用GBR奖励
- 预训练、指令微调与RLHF如何塑造LLM
由数入道
人工智能提示词工程交互
大型语言模型(LLM)那令人惊叹的语言理解、生成和在特定引导下的推理能力,并非魔法的产物,而是源于一个极其复杂、耗资巨大且经过精心设计的多阶段训练过程。理解这个训练过程的核心环节——大规模无监督预训练(Pre-training)、指令微调(InstructionFine-Tuning,IFT)以及从人类反馈中强化学习(ReinforcementLearningfromHumanFeedback,R
- HP Openvms education training
vms4ever
traininghpsystemperformancecommandfeatures
HPOpenVMSeducationprogramCoursedeliverymethods:seehowmanywaysweoffercourses!Instructor-ledtraining"Hands-on"»ILT-Instructor-ledtraining,attendatanHPEducationcenter»RAIL-Remotelyassistedinstructionalle
- 论文略读:Does Refusal Training in LLMs Generalize to the Past Tense?
UQI-LIUWJ
论文笔记人工智能
ICLR20251688拒绝训练被广泛用于防止大型语言模型(LLMs)生成有害、不良或非法的内容。我们揭示了当前拒绝训练方法中的一个奇特的泛化缺口:仅仅将一个有害请求改写为过去时(例如,将“HowtomakeaMolotovcocktail?”改为“HowdidpeoplemakeaMolotovcocktail?”)通常就足以破解许多最先进的LLM。我们在多个模型上系统地评估了这一方法,包括Ll
- 医疗人工智能大模型中的关键能力:【中期训练】mid-training
Allen_Lyb
医疗数智化教程人工智能健康医疗架构gpu算力
引言医疗人工智能(AI)领域的快速发展正在重塑医疗保健的未来。从辅助诊断到个性化治疗方案,AI技术已经显示出改变医疗实践的巨大潜力。然而,在将AI技术应用于医疗场景时,我们面临着独特的挑战。医疗数据的复杂性、决策的高风险性以及对可解释性的严格要求,都使得医疗AI的开发和部署比其他领域更为复杂。在这一背景下,"mid-training模型"的概念应运而生。这些模型代表了医疗AI发展的中间阶段,它们不
- 多模态大语言模型arxiv论文略读(117)
胖头鱼爱算法
#mllm_arxiv语言模型深度学习计算机视觉论文笔记论文阅读
Training-freeZero-shotComposedImageRetrievalviaWeightedModalityFusionandSimilarity➡️论文标题:Training-freeZero-shotComposedImageRetrievalviaWeightedModalityFusionandSimilarity➡️论文作者:Ren-DiWu,Yu-YenLin,Hue
- 【NLP】gensim lda使用方法
zkq_1986
NLP
OptimizedLatentDirichletAllocation(LDA)inPython.ForafasterimplementationofLDA(parallelizedformulticoremachines),seealsogensim.models.ldamulticore.ThismoduleallowsbothLDAmodelestimationfromatrainingcor
- RoBERTa相比BERT的改进
火云明月
自然语言处理自然语言处理
继BERT、XLNet之后,Facebook提出的RoBERTa(aRobustlyOptimizedBERTPretrainingApproach)。本篇文章主要总结下RoBERTa相比于BERT的改进。RoBERTa在模型结构层面没有改变,改变的只是预训练的方法,具体是以下三点。1.动态maskRoBERTa把预训练的数据复制10份,每一份都随机选择15%的Tokens进行mask,也就是说,
- #HDC2025# Codelabs训练营精彩内容抢先看!
harmonyos
本次活动现场设置了初、高阶赛题可供挑战,完成2道及以上初阶赛题才可挑战高阶赛题!而拥有HarmonyOS应用开发者认证的开发者可挑战现场任意赛题!还不快来考取证书↓↓↓https://developer.huawei.com/consumer/cn/training/classDetail...完成赛题更有丰富礼品可以赢取!点击长图即刻了解更多活动详情↓↓↓
- 【大模型】大模型微调(上)
油泼辣子多加
大模型实战深度学习机器学习人工智能
一、概念与背景微调(Fine-tuning)是一种迁移学习的方法,通过在已有的预训练模型基础上,利用目标任务的少量标注数据对模型进行二次训练,使其更好地适应特定任务的需求。预训练阶段模型通常使用大规模通用语料(如维基百科、新闻语料)进行无监督或自监督训练,学习通用的语言表示;微调阶段则使用特定任务数据进行有监督学习,实现从通用到专用的知识迁移。预训练(Pre-training):在大规模无标签语料
- BERT:让AI真正“读懂”语言的革命
摘取一颗天上星️
深度学习人工智能bert深度学习
BERT:让AI真正“读懂”语言的革命——图解谷歌神作《BERT:Pre-trainingofDeepBidirectionalTransformers》2018年,谷歌AI团队扔出一篇核弹级论文,引爆了整个NLP领域。这个叫BERT的模型在11项任务中屠榜,甚至超越人类表现!它背后的秘密是什么?本文将用最通俗的方式揭秘它的工作原理。一、传统AI的致命缺陷:单向理解想象你教AI完形填空:“小明买了
- 自然语言处理NLP星空智能对话机器人系列:深入理解Transformer自然语言处理 Training a GPT-2 language model
段智华
NLP星空智能对话机器人transformer自然语言处理GPT
自然语言处理NLP星空智能对话机器人系列:深入理解Transformer自然语言处理TrainingaGPT-2languagemodel目录GPT模型简介TrainingaGPT-2languagemodelStep1:Prerequisites星空智能对话机器人系列博客GPT模型简介生成式预训练转换器(GPT)是由OpenAI团队构建的一系列基于深度学习的语言模型。GPT-3是一个预先训练过的
- Emerging Properties in Unified Multimodal Pretraining
UnknownBody
LLMDailyMultimodal人工智能
文章主要内容总结本文介绍了字节跳动开源的多模态基础模型BAGEL,其核心目标是通过大规模交错多模态数据预训练,实现统一的多模态理解与生成能力。BAGEL采用仅解码器架构和混合Transformer专家(MoT)设计,在文本、图像、视频和网页数据上进行训练,展现出复杂多模态推理的新兴能力,如自由形式图像操作、未来帧预测、3D操作和世界导航等。实验表明,BAGEL在标准基准测试中显著优于开源模型,并通
- 医图论文 AAAI‘25 | KPL:视觉语言模型的免训练医学知识挖掘
小白学视觉
医学图像处理论文解读语言模型人工智能自然语言处理深度学习AAAI医学图像处理医学图像顶会
论文信息题目:KPL:Training-FreeMedicalKnowledgeMiningofVision-LanguageModelsKPL:视觉语言模型的免训练医学知识挖掘作者:JiaxiangLiu、TianxiangHu、JiaweiDu、RuiyuanZhang、JoeyTianyiZhou、ZuozhuLiu源码:https://github.com/JXLiu-AI/KPL论文创新
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,