- 【WRF理论第九期】输出文件:wrfout 和 wrfrst
WW、forever
WRF模型原理及应用WRF
【WRF理论第九期】输出文件:wrfout和wrfrst1.wrfout文件wrfout文件读取(Python)2.wrfrst文件参考在WRF(WeatherResearchandForecasting)模型中,wrfout和wrfrst是两种重要的输出文件,分别代表不同类型的模拟结果和功能。1.wrfout文件wrfout文件是WRF模拟的主要输出文件,包含了模型在指定时间步长下的所有模拟结果
- 一门科学的诞生:哈佛大学计算机研究发展的“酵母”时代
斐夷所非
computerscience计算机科学
注:机翻,未校。AScienceIsBorn:The“yeastytimes”whencomputerresearchgrewatHarvardbyHarryR.LewisSeptember-October2020IllustrationbyMarkSteeleDramatisPersonaeThirtyveteransofHarvard’sAikenComputationLabreunitedo
- NAS(Neural Architecture Search) 神经结构搜索
hxxjxw
Neuralarchitecturesearch(NAS),神经结构搜索,是强化学习的一个重要应用方向,也是AutoML的一个非常火的研究方向.NAS的原理是给定一个称为搜索空间的候选神经网络结构集合,用某种策略从中搜索出最优网络结构
- 论文高级GPT指令推荐
MaximusCoder
gpt网络人工智能
一、科研选题与方向确认二、文献综述与整理一、科研选题与方向确认头脑风暴选题指令:Brainstormpotentialresearchtopicswithin[你的研究领域],focusingonareaswithlimitedexistingresearchandsignificantpotentialimpact.Foreachtopic,provideaconciseexplanationo
- 使用Faiss进行高效相似度搜索
llzwxh888
faisspython
在现代AI应用中,快速和高效的相似度搜索是至关重要的。Faiss(FacebookAISimilaritySearch)是一个专门用于快速相似度搜索和聚类的库,特别适用于高维向量。本文将介绍如何使用Faiss来进行相似度搜索,并结合Python代码演示其基本用法。什么是Faiss?Faiss是一个由FacebookAIResearch团队开发的开源库,主要用于高维向量的相似性搜索和聚类。Faiss
- Faiss Tips:高效向量搜索与聚类的利器
焦习娜Samantha
FaissTips:高效向量搜索与聚类的利器faiss_tipsSomeusefultipsforfaiss项目地址:https://gitcode.com/gh_mirrors/fa/faiss_tips项目介绍Faiss是由FacebookAIResearch开发的一个用于高效相似性搜索和密集向量聚类的库。它支持多种硬件平台,包括CPU和GPU,能够在海量数据集上实现快速的近似最近邻搜索(AN
- Faiss:高效相似性搜索与聚类的利器
网络·魚
大数据faiss
Faiss是一个针对大规模向量集合的相似性搜索库,由FacebookAIResearch开发。它提供了一系列高效的算法和数据结构,用于加速向量之间的相似性搜索,特别是在大规模数据集上。本文将介绍Faiss的原理、核心功能以及如何在实际项目中使用它。Faiss原理:近似最近邻搜索:Faiss的核心功能之一是近似最近邻搜索,它能够高效地在大规模数据集中找到与给定查询向量最相似的向量。这种搜索是近似的,
- ResNet的半监督和半弱监督模型
Valar_Morghulis
Billion-scalesemi-supervisedlearningforimageclassificationhttps://arxiv.org/pdf/1905.00546.pdfhttps://github.com/facebookresearch/semi-supervised-ImageNet1K-models/权重在timm中也有:https://hub.fastgit.org/r
- 全球核酸样品制备市场展望:2030年预计达到6387.4百万美元
恒州诚思CC
人工智能大数据数据库数据分析
随着全球生物技术和生物医药行业的迅速发展,核酸样品制备市场正逐渐成为一个重要的生命科学领域。据恒州恒思(YHresearch)团队的研究数据显示,2023年全球核酸样品制备市场规模已达到4158.5百万美元,并预计在未来六年内,该市场将以年复合增长率(CAGR)6.5%的速度增长,到2030年市场规模预计将达到6387.4百万美元。核酸样品制备主要用于提取和纯化DNA和RNA样本,以供后续的分子生
- 2024全球数字电影摄像机、相机、广播摄像机市场报告
8K超高清
数码相机人工智能科技
一、全球数字电影摄像机市场规模①全球数字电影摄像机市场销售额市场调研机构恒州博智QYResearch统计,2022年全球数字电影摄像机市场销售额达到31.19亿元,2023年全球数字电影摄像机市场销售额达到33.7亿元,预计未来将持续保持平稳增长的态势,到2030年市场规模将接近53亿元,未来六年CAGR为6.3%。②全球主要数字电影摄像机制造商品牌全球主要的数字电影摄像机制造商包括阿莱、索尼、佳
- 论文阅读笔记: DINOv2: Learning Robust Visual Features without Supervision
小夏refresh
论文计算机视觉深度学习论文阅读笔记深度学习计算机视觉人工智能
DINOv2:LearningRobustVisualFeatureswithoutSupervision论文地址:https://arxiv.org/abs/2304.07193代码地址:https://github.com/facebookresearch/dinov2摘要大量数据上的预训练模型在NLP方面取得突破,为计算机视觉中的类似基础模型开辟了道路。这些模型可以通过生成通用视觉特征(即无
- 2022-05-22
李雨轩l
Part11,从本单元中我学到的最重要的理念(精读和视听说分别总结)精读:有更多比实验好的方法去探索动物的智商视听说:梦想着去许多国外的城市看看2,我在本片文章/音频/视频中学到的怦然心动的单词(精读和视听说分别总结)精读:extensively广泛地controversy争论explore探索vet兽医research研究员keeper饲养员encounter遇到reveal展示feat技艺do
- 通过mvn dependency:tree 查看依赖树,解决依赖jar冲突问题
常敲代码手不生
IDEA学习与实践
举例:E:\01workspace\chenxh\09research\rop\rop>mvndependency:tree[WARNING][WARNING]Someproblemswereencounteredwhilebuildingtheeffectivesettings[WARNING]'pluginRepositories.pluginRepository.id'mustnotbe'l
- 2019-02-05
ruicore
LeetCode274.H-Index.jpgLeetCode274.H-IndexDescriptionGivenanarrayofcitations(eachcitationisanon-negativeinteger)ofaresearcher,writeafunctiontocomputetheresearcher'sh-index.Accordingtothedefinitionofh-
- Python 使用 Detectron2 进行目标检测 (Detectron2, CenterNet2, Detic)
Eric Woo X
PythonAIUbuntupython目标检测开发语言
代码说明代码主要是一个用来演示如何使用Detectron2进行目标检测的脚本。它可以从摄像头或视频文件中读取图像,并应用指定的配置文件进行目标检测。其中,Detectron2结合了CenterNet2和Detic进行目标检测。主要库介绍Detectron2Detectron2是由FacebookAIResearch开发的一个用于目标检测和实例分割的开源库。它提供了一系列预训练模型和灵活的配置系统,
- TPAMI 2024 | 无需多源证据的无监督领域自适应
小白学视觉
论文解读IEEETPAMI深度学习TPAMIIEEE顶刊论文论文解读
EvidentialMulti-Source-FreeUnsupervisedDomainAdaptation题目:无需多源证据的无监督领域自适应作者:JiangboPei;AidongMen;YangLiu;XiahaiZhuang;QingchaoChen源码:https://github.com/SPIresearch/EAAF摘要多源自由无监督领域自适应(MSFUDA)需要从多个源模型中聚
- 如何高效记录并整理编程学习笔记?
编织幻境的妖
学习笔记
高效地记录和整理编程学习笔记是提高学习效率和巩固知识的重要手段。以下是一些建议,帮助你更好地管理你的编程学习笔记:一、选择合适的工具:数字笔记应用:如notion,evernote,onenote,roamresearch等,它们支持云同步,方便在不同设备间查看和编辑。文本编辑器:如vscode,sublimetext,notepad++等,适合编写纯文本笔记。markdown编辑器:如typor
- 云计算与分布式技术-常见云的比较
NicolasLearner
服务器云服务器云主机云服务云服务器阿里云腾讯云华为云
云南大学软件学院期中报告SchoolofSoftware,YunnanUniversity个人成绩学号姓名成绩学期:2019秋季学期课程名称:云计算任课教师:陆歌皓姓名:学号:年级:完成提交时间:2019年11月4日目录SchoolofSoftware,YunnanUniversity1云计算概念2什么叫做云计算?2云计算定义及分类2根据iiMediaResearch数据挖掘和分析机构所发论文分析
- IROS2021投稿说明
计算机视觉-Archer
IROSIntro,VenueandThemeTheIEEE/RSJInternationalConferenceonIntelligentRobotsandSystems(IROS)isapremierflagshipacademicconferenceinrobotics.Forover30-years,IROShasshowcasedleading-edgeresearch.Inhindsi
- 免费申请https的方法有哪些
AitTech
https网络协议http
免费申请HTTPS的方法主要包括以下几种:一、通过免费的证书颁发机构(CA)Let’sEncrypt:简介:Let’sEncrypt是一个由InternetSecurityResearchGroup(ISRG)运营的开源证书颁发机构,提供免费的SSL/TLS证书。特点:免费且自动化,开源且广泛支持,自动续期。使用步骤:安装Certbot(一个自动化工具,用于获取和更新Let’sEncrypt证书)
- FastReport .NET & FastReport.Core Crack
SEO-狼术
DelphinetCrack数据库
FastReport.NET&FastReport.CoreCrackKeyFeaturesofFastReport.NET:ItfunctionsalongwiththeinformationobtainedfromtheADO.NETandisallowedtofilterandsortthecolumnsofdatabeingresearched,utilizedalongwiththeir
- 向量数据库入坑:传统文本检索方式的降维打击,使用 Faiss 实现向量语义检索
soulteary
为了不折腾而去折腾的那些事faiss向量检索语义检索文本检索搜索引擎
在上一篇文章《聊聊来自元宇宙大厂Meta的相似度检索技术Faiss》中,我们有聊到如何快速入门向量检索技术,借助MetaAI(FacebookResearch)出品的faiss实现“最基础的文本内容相似度检索工具”,初步接触到了“语义检索”这种对于传统文本检索方式具备“降维打击”的新兴技术手段。有朋友在聊天中提到,希望能够聊点更具体的,比如基于向量技术实现的语义检索到底比传统文本检索强多少,以及是
- ChatGPT 50个顶级指令
yjyang1990
人工智能
点击上方蓝字关注我们!新用户注册,送3天超级会员免费使用GPT-4.0,不限次数和字数GPT-4omini免费✔在线使用地址:https://ai.ninebotai.com免费使用方法:直接点击下方名片,关注NineBotAi公众号每天公众号发送消息:抽奖,兑换卡密点击左侧,切换AI模型,选择GPT-4omini改写的提示词指令英文提示词:Iamaresearcherstudying+(你的研究
- 向量数据库Faiss(Facebook AI Similarity Search)
shiming8879
数据库faiss人工智能
向量数据库Faiss(FacebookAISimilaritySearch)是FacebookAIResearch开发的一款高效且可扩展的相似性搜索和聚类库,专门用于处理大规模向量数据的搜索和检索任务。Faiss以其出色的性能和灵活性,在图像检索、文本搜索、推荐系统等多个领域得到了广泛应用。以下将详细介绍Faiss的搭建与使用过程,包括安装、基本使用、索引类型选择、性能优化及应用场景等方面。一、F
- 向量数据库 Faiss 的搭建与使用
eqa11
数据库
向量数据库Faiss的搭建与使用一、引言在人工智能和大数据技术飞速发展的今天,向量数据库作为处理高维数据检索的关键技术,越来越受到重视。Faiss,作为由MetaAI(原FacebookAIResearch)开源的高效相似性搜索库,以其卓越的性能和灵活性,成为众多技术选型中的佼佼者。本文将深入探讨Faiss的搭建和使用,旨在为读者提供一个全面而详细的指南。二、Faiss简介与环境搭建1、Faiss
- 终于鼓起勇气给论文作者发送邮件要数据集和代码
椒图图图图
经验分享
渣硕+社恐鼓起勇气不容易,经过了一番思想挣扎。贴上整合的网络模板如下:Questionregardingtheimplementationof【问题】HiProfessor【教授】:Thankyouforreading!Iamasecond-yearundergraduateat【学校】University,China.Myresearchisfocusedon【研究】.Ihaverecently
- 当前主流的 ChatGPT 工具有哪些?
圣逸
人工智能专栏chatgpt
目录1.OpenAIChatGPT概述特色应用场景优缺点2.MicrosoftAzureOpenAIService概述特色应用场景优缺点3.GoogleBard概述特色应用场景优缺点4.ChatGPTbyAnthropic概述特色应用场景优缺点5.其他值得关注的工具5.1.HuggingFace5.2.FacebookAIResearch(FAIR)5.3.自然语言处理科研界的其他项目总结随着人工
- Vblog#1 English learning for science research
一粒咖啡
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档Englishlearningforscienceresearchintroduction一、GOALsin1month二、PlanseverydaySummeryintroductionIstartedtowritepaperinEnglishinordertoimproveabilityofEnglishandunderstand
- SAM 2——视频和图像实时实例分割的全新开源模型
知来者逆
计算机视觉SAMSAM2实例分割图像分割语义分割万物分割计算机视觉
引言源码地址:https://github.com/facebookresearch/segment-anything-2过去几年,人工智能领域在文本处理的基础人工智能方面取得了显著进步,这些进步改变了从客户服务到法律分析等各个行业。然而,在图像处理方面,我们才刚刚开始。视觉数据的复杂性以及训练模型以准确解释和分析图像的挑战带来了重大障碍。随着研究人员继续探索图像和视频的基础人工智能,人工智能图像
- ENAS:首个权值共享的神经网络搜索方法,千倍加速 | ICML 2018
VincentTeddy
NAS是自动设计网络结构的重要方法,但需要耗费巨大的资源,导致不能广泛地应用,而论文提出的EfficientNeuralArchitectureSearch(ENAS),在搜索时对子网的参数进行共享,相对于NAS有超过1000x倍加速,单卡搜索不到半天,而且性能并没有降低,十分值得参考 来源:【晓飞的算法工程笔记】公众号论文:EfficientNeuralArchitectureSearchvia
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement