【题解】洛谷P2354 [NOI2014] 随机数生成器(贪心 模拟)

题面很长 但这道题最大的难度在于贪心和卡常

前面一大堆随机数怎么搞出来完全可以直接模拟,注意该long long该取模的地方要做到。然后我们就到了字典序最小的那一部分。这里我们可以设两个数组L[x]与R[x],代表第x行最左边能取第几列、最右边能取第几列。初始化为1和m。然后我们从小到大枚举矩阵里的数,如果这个数所在的列满足它在所在的行内的L[x]到R[x]区间范围内,那么这个数就可以被选择,然后我们更新L和R数组。因为只能往右往下走,所以这一行以上的所有行的R[x]变为min(R[x],这一个数所在的列数),这一行以下的所有行的L[x]变为max(L[x],这一个数所在的列),然后继续枚举下一个数。如果当前的数不符合就跳过。

因为空间卡的非常死,我们要尽量减少开的数组,首先为了随机数生成所开的两个5000*5000的一位数组(还必须是int类型 long long会炸掉)是不能省的,在寻找某个数所在的位置时,我们可以将模拟已经用过的种子数组X记录那个数的编号(1,2,3,4,....),然后要用它的位置时在用数学公式计算。具体怎么操作感觉看代码就明白了。

#include
#include
#include
#include
#include
#define ll long long
using namespace std;
const int maxn=5010;
int x0;
ll a,b,c,d;
int n,m,q;
int t[25000010];
int x[25000010];
int L[maxn],R[maxn];
int findx,findy;
int main()
{
//	freopen("testdata.in","r",stdin);
	scanf("%d%lld%lld%lld%lld",&x0,&a,&b,&c,&d);
	scanf("%d%d%d",&n,&m,&q);
	x[0]=x0;
	for(int i=1;i<=n*m;i++)
	{
		x[i]=(a*x[i-1]%d*x[i-1]%d+b*x[i-1]%d+c)%d;
		t[i]=i;
	}
	for(int i=1;i<=n*m;i++)
	{
		swap(t[i],t[x[i]%i+1]);
	}
	for(int i=1;i<=q;i++)
	{
		int x,y;
		scanf("%d%d",&x,&y);
		swap(t[x],t[y]);
	}
	for(int i=1;i<=n*m;i++)
	{
		x[t[i]]=i;
	}

	for(int i=1;i<=n;i++)
	{
		L[i]=1;
		R[i]=m;
	}
	for(int i=1;i<=n*m;i++)
	{
		if(x[i]%m!=0) findx=x[i]/m+1;
		else findx=x[i]/m;
		findy=x[i]-(findx-1)*m;
//		cout<<"*****"<

 

你可能感兴趣的:(题解,贪心,模拟)