DP入门练习

T1

题目:codevs4815江哥的dp题a

codevs4815
一个简单的DP,注意开long long(不然会全WA),以及初始条件(这题有负数,所以要把f设成极小值.还要保证转移正确).

#include 
#include 
#include 
#define ll long long 
const int maxN = 1000 + 7;
using namespace std;

ll f[maxN][maxN][2],w[maxN];

int main() {
    ll n,k;
    memset(f,-63,sizeof(f));
    scanf("%lld%lld",&n,&k);
    for(int i = 1;i <= n;++ i) 
        scanf("%lld",&w[i]);    
    for(int i = 0;i <= n;++ i) f[i][0][0] = 0;
    for(int i = 1;i <= n;++ i) {
        for(int j = 1;j <= k;++ j) {
            f[i][j][0] = max(f[i - 1][j][0],f[i - 1][j][1]);
            f[i][j][1] = max(f[i - 1][j - 1][0] + w[i],f[i][j][1]);
        }
    }
    
    
    printf("%lld",max(f[n][k][0],f[n][k][1]));
} 

T2

题目:codevs1695 windows 2013

codevs1695
简单的DP,和上一个题差不多.注意题目中的开头先用

#include 
#include 
#include 
#define ll long long 
const int maxN = 100 + 7;
using namespace std;

ll f[maxN][2],a[maxN],b[maxN],c[maxN],n;//f[i][0]当前用勺   f[i][1]当前用筷

int main() {
    memset(f,0x3f,sizeof(f));
    scanf("%lld",&n);
    for(int i = 1;i <= n;++ i) 
        scanf("%lld%lld%lld",&a[i],&b[i],&c[i]);//勺子筷子i道菜a_i,b_i。交换c_i 
    f[1][1] = b[1];
    f[1][0] = c[1] + a[1];  
    for(int i = 2;i <= n;++ i) {
        f[i][0] = min(f[i - 1][1] + c[i] + a[i],f[i - 1][0] + a[i]);
        f[i][1] = min(f[i - 1][0] + c[i] + b[i],f[i - 1][1] + b[i]);
    }
    printf("%lld",min(f[n][0],f[n][1]));
    return 0;
}

luogu2066 机器分配

题目链接:luogu2066
设状态f[i][j]表示第i个公司分配j台的最佳答案.那么就由dp转移方程.
dp[i][j] =dp[i - 1][j - k] + w[i][k];
输出路径,用一个数组存下路径就OK了.这里要注意的是按字典序进行输出,.

#include 
#include 
#include 
#define ll long long 
const int maxN = 20;
const int maxM = 20;
using namespace std;

queueq;
ll n,m;
ll w[maxN][maxM],f[maxN][maxM],path[maxN][maxM][maxN];

int main() {
    scanf("%lld%lld",&n,&m);
    for(int i = 1;i <= n;++ i ){
        for(int j = 1;j <= m;++ j) {
            scanf("%lld",&w[i][j]);
        }
    }
    for(int i = 1;i <= n;++ i ) {
        for(int j = 0;j <=m ;++ j ) {
            for(int k = 0;k <= j;++ k) {
                if(f[i - 1][k] + w[i][j - k] > f[i][j]) {               
                    f[i][j] = f[i - 1][k] + w[i][j - k];
                    for(int l = 1;l < i;l ++ )path[i][j][l] = path[i - 1][k][l];
                    path[i][j][i] = j - k;
                }
            }
        }
    }
    printf("%d\n",f[n][m]);
    for(int i=1;i<=n;i++) cout<

luogu 1564膜拜

luogu1564
先求出i - j人数差.设f[i]表示前i人最少的分配的数,然后就有dp方程
f[i] = min(f[i],f[j] + 1)(j满足一定的条件)

#include
#include
using namespace std;

int n,m,a[2501],b[2501],f[2501];

int main()
{
    int i;
    scanf("%d%d",&n,&m);
    for(i=1,x;i<=n;i++)
    {
        scanf("%d",&x);
        if(x == 1)
          a[i] = a[i - 1] + 1,b[i] = b[i - 1];
        else
          a[i] = a[i - 1],b[i] = b[i - 1] + 1;
    }
    for(i = 1;i <= n;i ++)
    {
        f[i] = i;
        for(j = i;j >= 0;j --)
          if(a[i] - a[j] == i - j || b[i] - b[j] == i - j || abs(b[i] - b[j] - a[i] + a[j]) <= m)
            f[i] = min(f[i],f[j]+1);   
    }
    printf("%d",f[n]);
    return 0;
}

luogu1115最大字段和

luogu1115
f[i]表示第i个位置的最大字段和.然后得转移方程:f[i] = max(f[i - 1] + a[i],a[i])
用一个变量不断地记录maxn

#include 
#include 
#include 
const int maxN = 200000 + 7;
using namespace std;

int f[maxN],maxn = -0x7fffffff,a[maxN];

int main() {
    int n;
    scanf("%d",&n);
    for(int i = 1;i <= n;++ i ) 
        scanf("%d",&a[i]);
    for(int i = 1;i <= n;++ i) {
        f[i] = max(f[i - 1] + a[i],a[i]);
        maxn = max(f[i],maxn);
    }
    printf("%d",maxn);
    return 0;
}

poj2479 -- Maximum sum

poj2479
正反两边最大子段和,然后枚举断点即可.

#include 
#include 
#include 
#include 
using namespace std;
const int maxN = 50000 + 7;

int f[maxN],a[maxN],dp[maxN],qwq[maxN],qaq[maxN];

int main() {
    int T,n;
    scanf("%d",&T);
    while(T --) {
        int Ans = -0x7fffffff;
        scanf("%d",&n);
        memset(f,0,sizeof(f));
        memset(dp,0,sizeof(dp));
        memset(qwq,0,sizeof(qwq));
        memset(qaq,0,sizeof(qaq));
        for(int i = 1;i <= n;++ i) 
            scanf("%d",&a[i]);
        for(int i = 1;i <= n;++ i) 
            f[i] = max(f[i - 1] + a[i],a[i]),qwq[i] = max(f[i],qwq[i - 1]);
        for(int j = n;j >= 1; -- j) 
            dp[j] = max(dp[j + 1] + a[j],a[j]),qaq[j] = max(dp[j],qaq [j - 1]);
        for(int i = 1;i <= n;++ i) {
            Ans = max(Ans,qwq[i] + qaq[i + 1]);
        } 
        printf("%d\n",Ans);
    }
}

转载于:https://www.cnblogs.com/tpgzy/p/9286307.html

你可能感兴趣的:(DP入门练习)