Python编程进阶:高级特性

切片

def trim(s):
    if s[:1]==' ':
        return trim(s[1:])
    elif s[-1:]==' ':
        return trim(s[:-1])
    return s
if trim('hello  ') != 'hello':
    print('测试失败!')
elif trim('  hello') != 'hello':
    print('测试失败!')
elif trim('  hello  ') != 'hello':
    print('测试失败!')
elif trim('  hello  world  ') != 'hello  world':
    print('测试失败!')
elif trim('') != '':
    print('测试失败!')
elif trim('    ') != '':
    print('测试失败!')
else:
    print('测试成功!')

迭代

判断是否可迭代

>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False

实现下标循环

Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身

for i , value in enumerate(['a','b','c']):
    print(i,value)

0 a
1 b
2 c

###同时引用两个变量

>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
...     print(x, y)
...
1 1
2 4
3 9

查找最大值和最小值

def findMinAndMax(L):
    min=1e10
    max=-1e10
    for i in L:
        if i <= min:
            min=i
        if i >= max:
            max=i
    if max>=min:
        return (min,max)
    return (None,None)

if findMinAndMax([]) != (None, None):
    print('测试失败!')
elif findMinAndMax([7]) != (7, 7):
    print('测试失败!')
elif findMinAndMax([7, 1]) != (1, 7):
    print('测试失败!')
elif findMinAndMax([7, 1, 3, 9, 5]) != (1, 9):
    print('测试失败!')
else:
    print('测试成功!')

列表生成式

import os
print([x*x for x in range(1,11) if x%2==0])
print([m+n for m in 'ABC' for n in 'XYZ']) 	    #两层循环
print([d for d in os.listdir('..')])
d={'x':'A','y':'B','z':'C'}
print([k+'='+v for k,v in d.items()])			#使用两个变量来生成list
L = ['Hello', 'World', 'IBM', 'Apple']
print([v.lower() for v in L])					#把一个list里面所有的字符串变成小写

[4, 16, 36, 64, 100]
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

['x=A', 'y=B', 'z=C']
['hello', 'world', 'ibm', 'apple']

L1 = ['Hello', 'World', 18, 'Apple', None]
L2=[v.lower() for v in L1 if isinstance(v,str)]
print(L2)
if L2 == ['hello', 'world', 'apple']:
    print('测试通过!')
else:
    print('测试失败!')

生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))

建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。

def fib(max):
    n,a,b=0,0,1
    while n<max:
        print(b)
        a,b=b,a+b
        n=n+1
    return 'done'

fib(6)
注意,赋值语句:

a, b = b, a + b
相当于:

t = (b, a + b) # t是一个tuple
a = t[0]
b = t[1]

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'
>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

def odd():
    print('step 1')
    yield 1
    print('step 2')
    yield 3
    print('step 3')
    yield 5

o=odd()
next(o)
next(o)
next(o)
next(o)
Traceback (most recent call last):
step 1
  File "D:/PCL/CocktailModel-master/test.py", line 13, in <module>
step 2
    next(o)
step 3
StopIteration

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

for n in fib(6):
    print(n)

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

g=fib(6)
while True:
    try:
        x=next(g)
        print('g:',x)
    except StopIteration as e:
        print('return value',e.value)
        break
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
return value done
### 杨辉三角
def triangles():
    max=10
    n=0
    L= [1, ]
    while n<max:
        yield L
        L=[1]+[L[i]+L[i+1] for i in range(len(L)-1)]+[1]
        n=n+1

t=triangles()
for i in range(10):
    print(next(t))

列表也可以这样相加,牛逼

迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如list、tuple、dict、set、str等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。
可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。

把list、dict、str等Iterable变成Iterator可以使用iter()函数:

from collections import Iterator
print(isinstance(iter([]),Iterator))
print(isinstance(iter('abc'),Iterator))
True
True

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

总结

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

你可能感兴趣的:(Python)