poj 2191 大数素数判定 && 大数素数分解



再次用到Miller_rabin 和Pollard - rho,

题意: 给出一个梅森数,2^x - 1,;

           然后要对x为素数的时候,梅森数不为素数时的数进行素数分解;

思路:打表;


#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
const int maxn = 64 ;
#define INF 0x3f3f3f3f
#define clr(x,y) memset(x,y,sizeof x )
typedef long long ll;
#define eps 10e-10
const ll Mod = 1000000007;
typedef pair P;

ll Mult_mod (ll a,ll b,ll c)  //减法实现比取模速度快
{    //返回(a*b) mod c,a,b,c<2^63
    a%=c;
    b%=c;
    ll ret=0;
    while (b)
    {
        if (b&1)
        {
            ret+=a;
            if (ret>=c) ret-=c;
        }
        a<<=1;
        if (a>=c) a-=c;
        b>>=1;
    }
    return ret;
}

//计算  x^n %c
ll Pow_mod (ll x,ll n,ll mod) //x^n%c
{
    if (n==1) return x%mod;
    x%=mod;
    ll tmp=x;
    ll ret=1;
    while (n)
    {
        if (n&1) ret=Mult_mod(ret,tmp,mod);
        tmp=Mult_mod(tmp,tmp,mod);
        n>>=1;
    }
    return ret;
}

//以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
//一定是合数返回true,不一定返回false
bool Check (ll a,ll n,ll x,ll t)
{
    ll ret=Pow_mod(a,x,n);
    ll last=ret;
    for (ll i=1;i<=t;i++)
    {
        ret=Mult_mod(ret,ret,n);
        if(ret==1&&last!=1&&last!=n-1) return true; //合数
        last=ret;
    }
    if (ret!=1) return true;
    return false;
}

// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;
ll S = 20;
bool Miller_Rabin (ll n)
{
    if (n<2) return false;
    if (n==2) return true;
    if ((n&1)==0) return false;//偶数
    ll x=n-1;
    ll t=0;
    while ((x&1)==0) {x>>=1;t++;}
    for (ll i=0;i=n) p=Pollard_rho(p,rand()%(n-1)+1);
    Findfac(p);
    Findfac(n/p);
}

int len = 0;
ll a[maxn];
ll prime[maxn];
ll ans[maxn][maxn];
bool flag[maxn];
int cnt[maxn];
void Init()
{
    a[0] = 1;
    for(int i = 1; i < maxn; i ++)
        a[i] = a[i - 1] * 2;
    bool is_[maxn];
    clr(is_,true);
    for(int i = 2; i < maxn; i ++)
    {
        if(is_[i])
        {
            for(int j = i * 2; j < maxn ; j += i)
                is_[j] = false;
            prime[len ++] = i;
        }
    }

    clr(flag,true);
    for(int i = 0; i < len; i ++)
    {
//        cout << i << " " << prime[i] << endl;
        if(!Miller_Rabin(a[prime[i]] - 1))
        {
            tol = 0;
//            cout << a[prime[i]] - 1 << " ";
            flag[i] = false;
            Findfac(a[prime[i]] - 1);
//            cout << tol << endl;
            sort(factor,factor + tol);
            cnt[i] = tol;
            for(int j = 0; j < tol; j ++)
            {
                ans[i][j] = factor[j];
            }
        }
    }
}
int main()
{
    Init();
    int n;
    while( ~ scanf("%d",&n))
    {
        for(int i = 0; i < len; i ++)
        {
            if(!flag[i] && prime[i] < n)
            {
                printf("%lld",ans[i][0]);
                for(int j = 1; j < cnt[i]; j ++)
                {
                    printf(" * %lld",ans[i][j]);
                }
                printf(" = %lld = ( 2 ^ %d ) - 1\n",a[prime[i]],prime[i]);
            }
        }
    }
    return 0;
}


你可能感兴趣的:(素数)