codeforces 610C Harmony Analysis 构造

题目如下:

C. Harmony Analysis
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

The semester is already ending, so Danil made an effort and decided to visit a lesson on harmony analysis to know how does the professor look like, at least. Danil was very bored on this lesson until the teacher gave the group a simple task: find 4 vectors in 4-dimensional space, such that every coordinate of every vector is 1 or  - 1 and any two vectors are orthogonal. Just as a reminder, two vectors in n-dimensional space are considered to be orthogonal if and only if their scalar product is equal to zero, that is: 

.

Danil quickly managed to come up with the solution for this problem and the teacher noticed that the problem can be solved in a more general case for 2k vectors in 2k-dimensinoal space. When Danil came home, he quickly came up with the solution for this problem. Can you cope with it?

Input

The only line of the input contains a single integer k (0 ≤ k ≤ 9).

Output

Print 2k lines consisting of 2k characters each. The j-th character of the i-th line must be equal to ' * ' if the j-th coordinate of the i-th vector is equal to  - 1, and must be equal to ' + ' if it's equal to  + 1. It's guaranteed that the answer always exists.

If there are many correct answers, print any.

Sample test(s)
input
2
output
++**
+*+*
++++
+**+

思路:这道题的关键在于要能发现n=i(i>0)的结果,可以由n=i-1的结果构造出来。即如果n=i-1时为A,那么n=i时,可以构造A A/A -A(-A就是A中每个取相反的符号,/表示换一行)。可以证明这是符合要求的。这样一来,这道题就简单了。


代码如下:

#include

using namespace std;


const int maxn = 1<<11;

char s[maxn][maxn];


char op(char c){

    if (c == '*') {

        return '+';

    }else return '*';

}


int main(int argc, const char * argv[]) {

    int n;

    cin >> n;

    s[1][0] = '+';s[1][1] = '\0';

    int l = 1;

    for (int i=0; i

        for (int j=1; j<=l; j++) {

            for (int k=0; k

                s[j][k+l] = s[j][k];

            }

            s[j][l*2] = '\0';

        }

        for (int j=l+1; j<=2*l; j++) {

            for (int k=0; k

                s[j][k] = s[j-l][k];

                s[j][k+l] = op(s[j][k]);

            }

            s[j][l*2] = '\0';

        }

        l*=2;

    }

    for (int i=1; i<=l; i++) {

        cout << s[i] << endl;

    }

    return 0;

}


你可能感兴趣的:(codeforces,ACM,codeforces,构造)