*args 主要用于函数定义。 你可以将不定数量的参数传递给一个函数。
这里的不定的意思是:预先并不知道, 函数使用者会传递多少个参数给你, 所以在这个场景下使用这两个关键字。 *args 是用来发送一个非键值对的可变数量的参数列表给一个函数.
(args名称可换)
程序:
def test_var_args(f_arg, *argv):
print("first normal arg:", f_arg)
for arg in argv:
print("another arg through *argv:", arg)
test_var_args('yasoob', 'python', 'eggs', 'test')
结果:
first normal arg: yasoob
another arg through *argv: python
another arg through *argv: eggs
another arg through *argv: test
**kwargs 允许你将不定长度的键值对, 作为参数传递给一个函数。 如果你想要在一个函数里处理带名字的参数, 你应该使用**kwargs。(同样keargs名称可换)
程序:
def test_var_kwargs(**kwargs):
for a,b in kwargs.items():
print(a+'==='+b)
test_var_kwargs(name='morty')
输出
name===morty
也可以在调用函数的时候使用*args 和 **kwargs
*args程序:
def test_arg_kwargs(para1,para2,para3):
print("1"+para1)
print("2"+para2)
print("3"+para3)
shenmegui=('one','two','three')
test_arg_kwargs(*shenmegui)
输出:
1one
2two
3three
**kwargs程序
def test_arg_kwargs(para1,para2,para3):
print("1"+para1)
print("2"+para2)
print("3"+para3)
shenmegui={'para1':'one','para2':'two','para3':'three'}
test_arg_kwargs(**shenmegui)
输出:
1one
2two
3three
那么如果你想在函数里同时使用所有这三种参数, 顺序是这样的:
some_func(fargs, *args, **kwargs)
在命令行中打断点:
import pdb
def hellopdb():
pdb.set_trace()
print('i don\'t have time')
hellopdb()
运行后就进行debug模式,此时可进行如下命令操作:
单步跳过(next)和单步进入(step)的区别在于, 单步进入会进入当前行调用的函数内部并停在里面, 而单步跳过会(几乎)全速执行完当前行调用的函数,并停在当前函数的下一行。
Python中任意的对象,只要它定义了可以返回一个迭代器的__iter__方法,或者定义了可以支持下标索引的__getitem__方法(这些双下划线方法会在其他章节中全面解释),那么它就是一个可迭代对象。简单说,可迭代对象就是能提供迭代器的任意对象。那迭代器又是什么呢?
任意对象,只要定义了next(Python2) 或者__next__方法,它就是一个迭代器。就这么简单。现在我们来理解迭代(iteration)
用简单的话讲,它就是从某个地方(比如一个列表)取出一个元素的过程。当我们使用一个循环来遍历某个东西时,这个过程本身就叫迭代。现在既然我们有了这些术语的基本理解,那我们开始理解生成器吧。
生成器也是一种迭代器,但是你只能对其迭代一次。这是因为它们并没有把所有的值存在内存中,而是在运行时生成值。你通过遍历来使用它们,要么用一个“for”循环,要么将它们传递给任意可以进行迭代的函数和结构。大多数时候生成器是以函数来实现的。然而,它们并不返回一个值,而是yield(暂且译作“生出”)一个值。这里有个生成器函数的简单例子:
def generator_function():
for i in range(10):
yield i
for j in generator_function():
print(j)
输出
0
1
2
3
4
5
6
7
8
9
这个案例并不是非常实用。生成器最佳应用场景是:你不想同一时间将所有计算出来的大量结果集分配到内存当中,特别是结果集里还包含循环。(这样做会消耗大量资源)
许多Python 2里的标准库函数都会返回列表,而Python 3都修改成了返回生成器,因为生成器占用更少的资源。
下面是一个计算斐波那契数列的生成器:
def fibon(n):
a,b=1,1
for i in range(n):
yield a
a,b=b,a+b
for i in fibon(5):
print(i)
我们已经讨论过生成器使用一次迭代,但我们并没有测试过。在测试前你需要再知道一个Python内置函数:next()
。它允许我们获取一个序列的下一个元素。那我们来验证下我们的理解:
def fibon(n):
a,b=1,1
for i in range(n):
yield a
a,b=b,a+b
gen=fibon(5)
print(next(gen))
print(next(gen))
print(next(gen))
我们可以看到,在yield掉所有的值后,next()触发了一个StopIteration的异常。基本上这个异常告诉我们,所有的值都已经被yield完了。你也许会奇怪,为什么我们在使用for循环时没有这个异常呢?啊哈,答案很简单。for循环会自动捕捉到这个异常并停止调用next()。你知不知道Python中一些内置数据类型也支持迭代哦?我们这就去看看:
my_string = "Yasoob"
next(my_string)
# Output: Traceback (most recent call last):
# File "", line 1, in
# TypeError: str object is not an iterator
好吧,这不是我们预期的。这个异常说那个str对象不是一个迭代器。对,就是这样!它是一个可迭代对象,而不是一个迭代器。这意味着它支持迭代,但我们不能直接对其进行迭代操作。那我们怎样才能对它实施迭代呢?是时候学习下另一个内置函数,iter。它将根据一个可迭代对象返回一个迭代器对象。这里是我们如何使用它:
a='morty'
b=iter(a)
print(next(b))
# Output: 'm'
lambda表达式是一行函数。
它们在其他语言中也被称为匿名函数。如果你不想在程序中对一个函数使用两次,你也许会想用lambda表达式,它们和普通的函数完全一样。
原型:
lambda 参数:操作(参数)
例子:
add = lambda x, y: x + y
print(add(3, 5))
# Output: 8
这还有一些lambda表达式的应用案例,可以在一些特殊情况下使用:
列表排序
a = [(1, 2), (4, 1), (9, 10), (13, -3)]
a.sort(key=lambda x: x[1])
print(a)
# Output: [(13, -3), (4, 1), (1, 2), (9, 10)]
列表并行排序
data = zip(list1, list2)
data = sorted(data)
list1, list2 = map(lambda t: list(t), zip(*data))
你是否想过通过网络快速共享文件?好消息,Python为你提供了这样的功能。进入到你要共享文件的目录下并在命令行中运行下面的代码:
# Python 2
python -m SimpleHTTPServer
# Python 3
python -m http.server
三元运算符通常在Python里被称为条件表达式,这些表达式基于真(true)/假(false)的条件判断,在Python 2.4以上才有了三元操作。
下面是一个伪代码和例子:
#如果条件为真,返回真 否则返回假
condition_is_true if condition else condition_is_false
例子:
is_fat = True
state = "fat" if is_fat else "not fat"
它允许用简单的一行快速判断,而不是使用复杂的多行if
语句。 这在大多数时候非常有用,而且可以使代码简单可维护。
另一个晦涩一点的用法比较少见,它使用了元组,请继续看如下伪代码:
#(返回假,返回真)[真或假]
(if_test_is_false, if_test_is_true)[test]
例子:
fat = True
fitness = ("skinny", "fat")[fat]
print("Ali is", fitness)
#输出: Ali is fat
这之所以能正常工作,是因为在Python中,True等于1,而False等于0,这就相当于在元组中使用0和1来选取数据。
上面的例子没有被广泛使用,而且Python玩家一般不喜欢那样,因为没有Python味儿(Pythonic)。这样的用法很容易把真正的数据与True/False弄混。
另外一个不使用元组条件表达式的缘故是因为在元组中会把两个条件都执行,而 if-else
的条件表达式不会这样。例如:
condition = True
print(2 if condition else 1 / 0)
#输出: 2
print((1 / 0, 2)[condition])
#输出ZeroDivisionError异常
这是因为在元组中是先建数据,然后用True(1)/False(0)来索引到数据。 而if-else
条件表达式遵循普通的if-else
逻辑树, 因此,如果逻辑中的条件异常,或者是重计算型(计算较久)的情况下,最好尽量避免使用元组条件表达式。
Map,Filter 和 Reduce 三个函数能为函数式编程提供便利。我们会通过实例一个一个讨论并理解它们。
Map会将一个函数映射到一个输入列表的所有元素上。这是它的规范,例如:
map(function_to_apply, list_of_inputs)
大多数时候,我们要把列表中所有元素一个个地传递给一个函数,并收集输出。比方说:
items = [1, 2, 3, 4, 5]
squared = []
for i in items:
squared.append(i**2)
map
可以让我们用一种简单而漂亮得多的方式来实现。就是这样:
items = [1, 2, 3, 4, 5]
squared = list(map(lambda x: x**2, items))
大多数时候,我们使用匿名函数(lambdas)来配合map
, 所以我在上面也是这么做的。 不仅用于一列表的输入, 我们甚至可以用于一列表的函数!
def multiply(x):
return (x*x)
def add(x):
return (x+x)
funcs = [multiply, add]
for i in range(5):
value = map(lambda x: x(i), funcs)
print(list(value))
# 译者注:上面print时,加了list转换,是为了python2/3的兼容性
# 在python2中map直接返回列表,但在python3中返回迭代器
# 因此为了兼容python3, 需要list转换一下
# Output:
# [0, 0]
# [1, 2]
# [4, 4]
# [9, 6]
# [16, 8]
顾名思义,filter
过滤列表中的元素,并且返回一个由所有符合要求的元素所构成的列表,符合要求即函数映射到该元素时返回值为True. 这里是一个简短的例子:
number_list = range(-5, 5)
less_than_zero = filter(lambda x: x < 0, number_list)
print(list(less_than_zero))
# 译者注:上面print时,加了list转换,是为了python2/3的兼容性
# 在python2中filter直接返回列表,但在python3中返回迭代器
# 因此为了兼容python3, 需要list转换一下
# Output: [-5, -4, -3, -2, -1]
这个filter
类似于一个for
循环,但它是一个内置函数,并且更快。
注意:如果map
和filter
对你来说看起来并不优雅的话,那么你可以看看另外一章:列表/字典/元组推导式。
当需要对一个列表进行一些计算并返回结果时,Reduce
是个非常有用的函数。举个例子,当你需要计算一个整数列表的乘积时。
通常在 python 中你可能会使用基本的 for 循环来完成这个任务。
现在我们来试试 reduce:
from functools import reduce
product = reduce( (lambda x, y: x * y), [1, 2, 3, 4] )
# Output: 24
set
(集合)是一个非常有用的数据结构。它与列表(list
)的行为类似,区别在于set
不能包含重复的值。
这在很多情况下非常有用。例如你可能想检查列表中是否包含重复的元素,你有两个选择,第一个需要使用for
循环,就像这样:
some_list = ['a', 'b', 'c', 'b', 'd', 'm', 'n', 'n']
duplicates = []
for value in some_list:
if some_list.count(value) > 1:
if value not in duplicates:
duplicates.append(value)
print(duplicates)
### 输出: ['b', 'n']
但还有一种更简单更优雅的解决方案,那就是使用集合(sets
),你直接这样做:
some_list = ['a', 'b', 'c', 'b', 'd', 'm', 'n', 'n']
duplicates = set([x for x in some_list if some_list.count(x) > 1])
print(duplicates)
### 输出: set(['b', 'n'])
集合还有一些其它方法,下面我们介绍其中一部分。
你可以对比两个集合的交集(两个集合中都有的数据),如下:
valid = set(['yellow', 'red', 'blue', 'green', 'black'])
input_set = set(['red', 'brown'])
print(input_set.intersection(valid))
### 输出: set(['red'])
你可以用差集(difference)找出无效的数据,相当于用一个集合减去另一个集合的数据,例如:
valid = set(['yellow', 'red', 'blue', 'green', 'black'])
input_set = set(['red', 'brown'])
print(input_set.difference(valid))
### 输出: set(['brown'])
你也可以用{}符号来创建集合,如:
a_set = {'red', 'blue', 'green'}
print(type(a_set))
### 输出:
上下文管理器允许你在有需要的时候,精确地分配和释放资源。
使用上下文管理器最广泛的案例就是with
语句了。
想象下你有两个需要结对执行的相关操作,然后还要在它们中间放置一段代码。
上下文管理器就是专门让你做这种事情的。举个例子:
with open('some_file', 'w') as opened_file:
opened_file.write('Hola!')
上面这段代码打开了一个文件,往里面写入了一些数据,然后关闭该文件。如果在往文件写数据时发生异常,它也会尝试去关闭文件。上面那段代码与这一段是等价的:
file = open('some_file', 'w')
try:
file.write('Hola!')
finally:
file.close()
当与第一个例子对比时,我们可以看到,通过使用with
,许多样板代码(boilerplate code)被消掉了。 这就是with
语句的主要优势,它确保我们的文件会被关闭,而不用关注嵌套代码如何退出。
上下文管理器的一个常见用例,是资源的加锁和解锁,以及关闭已打开的文件(就像我已经展示给你看的)。
让我们看看如何来实现我们自己的上下文管理器。这会让我们更完全地理解在这些场景背后都发生着什么。
一个上下文管理器的类,最起码要定义__enter__
和__exit__
方法。
让我们来构造我们自己的开启文件的上下文管理器,并学习下基础知识。
class File(object):
def __init__(self, file_name, method):
self.file_obj = open(file_name, method)
def __enter__(self):
return self.file_obj
def __exit__(self, type, value, traceback):
self.file_obj.close()
通过定义__enter__
和__exit__
方法,我们可以在with语句里使用它。我们来试试:
with File('demo.txt', 'w') as opened_file:
opened_file.write('Hola!')
我们的__exit__
函数接受三个参数。这些参数对于每个上下文管理器类中的__exit__
方法都是必须的。我们来谈谈在底层都发生了什么。
我们还没有谈到__exit__方法的这三个参数:type, value和traceback。
在第4步和第6步之间,如果发生异常,Python会将异常的type,value和traceback传递给__exit__方法。
它让__exit__方法来决定如何关闭文件以及是否需要其他步骤。在我们的案例中,我们并没有注意它们。
那如果我们的文件对象抛出一个异常呢?万一我们尝试访问文件对象的一个不支持的方法。举个例子:
with File('demo.txt', 'w') as opened_file:
opened_file.undefined_function('Hola!')
我们来列一下,当异常发生时,with语句会采取哪些步骤。
在我们的案例中,__exit__方法返回的是None(如果没有return语句那么方法会返回None)。因此,with语句抛出了那个异常。
Traceback (most recent call last):
File "" , line 2, in <module>
AttributeError: 'file' object has no attribute 'undefined_function'
我们尝试下在__exit__方法中处理异常:
class File(object):
def __init__(self, file_name, method):
self.file_obj = open(file_name, method)
def __enter__(self):
return self.file_obj
def __exit__(self, type, value, traceback):
print("Exception has been handled")
self.file_obj.close()
return True
with File('demo.txt', 'w') as opened_file:
opened_file.undefined_function()
# Output: Exception has been handled
我们的__exit__方法返回了True,因此没有异常会被with语句抛出。
这还不是实现上下文管理器的唯一方式。还有一种方式,我们会在下一节中一起看看。
我们还可以用装饰器(decorators)和生成器(generators)来实现上下文管理器。
Python有个contextlib模块专门用于这个目的。我们可以使用一个生成器函数来实现一个上下文管理器,而不是使用一个类。
让我们看看一个基本的,没用的例子:
from contextlib import contextmanager
@contextmanager
def open_file(name):
f = open(name, 'w')
yield f
f.close()
OK啦!这个实现方式看起来更加直观和简单。然而,这个方法需要关于生成器、yield和装饰器的一些知识。在这个例子中我们还没有捕捉可能产生的任何异常。它的工作方式和之前的方法大致相同。
让我们小小地剖析下这个方法。
那现在我们既然知道了所有这些,我们可以用这个新生成的上下文管理器了,像这样:
with open_file('some_file') as f:
f.write('hola!')