当运算数据数量很大且稀疏的时候,使用稀疏的数据存储格式可以节省大量的存储空间且加快计算速度。本文介绍三种比较常见的稀疏矩阵表示方式:COO(Coordinate Format坐标表示),CSR(Compressed Sparse Row行压缩),CSC(Compressed Sparse Column列压缩)。
>>> import scipy
>>> import numpy as np
>>> row_idx = np.array([0,0,1,2,2,3,3,3])
>>> col_idx = np.array([0,3,1,2,3,0,1,3])
>>> values = np.array([4,2,1,5,7,6,3,8])
>>> coo_mat = scipy.sparse.coo_matrix((values, (row_idx , col_idx)),shape = (4,4)).toarray()
>>> coo_mat
array([[4, 0, 0, 2],
[0, 1, 0, 0],
[0, 0, 5, 7],
[6, 3, 0, 8]])
row_idx 和col_idx 指定values 中每个数据对应的行下标和列下标。
>>> col_idx = np.array([0,3,1,2,3,0,1,3])
>>> values = np.array([4,2,1,5,7,6,3,8])
>>> row_ptr = np.array([0,2,3,5,8])
>>> csr_mat = scipy.sparse.csr_matrix((values,col_idx, row_ptr),shape=(4,4)).toarray()
>>> csr_mat
array([[4, 0, 0, 2],
[0, 1, 0, 0],
[0, 0, 5, 7],
[6, 3, 0, 8]])
把非零数据排成一列,并从0开始建立索引,row_ptr指定在哪个索引位置进行换行。例如,稀疏矩阵的第二行是1,那么就在索引2处进行切割。
>>> values = np.array([4,6,1,3,5,2,7,8])
>>> row_idx = np.array([0,3,1,3,2,0,2,3])
>>> col_ptr = np.array([0,2,4,5,8])
>>> csc_mat = scipy.sparse.csc_matrix((values,row_idx,col_ptr),shape=(4,4)).toarray()
>>> csc_mat
array([[4, 0, 0, 2],
[0, 1, 0, 0],
[0, 0, 5, 7],
[6, 3, 0, 8]])
把非零数据排成一列,并从0开始建立索引,col_ptr指定在哪个索引位置进行换行。例如,稀疏矩阵的第二列是1、3,那么就在索引2处进行切割。注意到CSC的数据是按列顺序排列,和CSR有所不同。