>> from numpy import * >>> from numpy.linalg import * >>> a = array([[1.0, 2.0], [3.0, 4.0]]) >>> print a [[ 1. 2.] [ 3. 4.]] >>> a.transpose() array([[ 1., 3.], [ 2., 4.]]) >>> inv(a) array([[-2. , 1. ], [ 1.5, -0.5]]) >>> u = eye(2) # unit 2x2 matrix; "eye" represents "I" >>> u array([[ 1., 0.], [ 0., 1.]]) >>> j = array([[0.0, -1.0], [1.0, 0.0]]) >>> dot (j, j) # matrix product array([[-1., 0.], [ 0., -1.]]) >>> trace(u) # trace 2.0 >>> y = array([[5.], [7.]]) >>> solve(a, y) array([[-3.], [ 4.]]) >>> eig(j) (array([ 0.+1.j, 0.-1.j]), array([[ 0.70710678+0.j, 0.70710678+0.j], [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]])) Parameters: square matrix Returns The eigenvalues, each repeated according to its multiplicity. The normalized (unit "length") eigenvectors, such that the column ``v[:,i]`` is the eigenvector corresponding to the eigenvalue ``w[i]`` .