排序
归并排序
def merge_sort(a: List[int]):
_merge_sort_between(a, 0, len(a) - 1)
def _merge_sort_between(a: List[int], low: int, high: int):
if low < high:
mid = low + (high - low) // 2
_merge_sort_between(a, low, mid)
_merge_sort_between(a, mid + 1, high)
_merge(a, low, mid, high)
def _merge(a: List[int], low: int, mid: int, high: int):
i, j = low, mid + 1
tmp = []
while i <= mid and j <= high:
if a[i] <= a[j]:
tmp.append(a[i])
i += 1
else:
tmp.append(a[j])
j += 1
start = i if i <= mid else j
end = mid if i <= mid else high
tmp.extend(a[start:end + 1])
a[low:high + 1] = tmp
快速排序
def quick_sort(a: List[int]):
_quick_sort_between(a, 0, len(a) - 1)
def _quick_sort_between(a: List[int], low: int, high: int):
if low < high:
k = random.randint(low, high)
a[low], a[k] = a[k], a[low]
m = _partition(a, low, high)
_quick_sort_between(a, low, m - 1)
_quick_sort_between(a, m + 1, high)
def _partition(a: List[int], low: int, high: int):
pivot, j = a[low], low
for i in range(low + 1, high + 1):
if a[i] <= pivot:
j += 1
a[j], a[i] = a[i], a[j]
a[low], a[j] = a[j], a[low]
return j
插入排序
def insertion_sort(a: List[int]):
length = len(a)
if length <= 1:
return
for i in range(1, length):
value = a[i]
j = i - 1
while j >= 0 and a[j] > value:
a[j + 1] = a[j]
j -= 1
a[j + 1] = value
冒泡排序
from typing import List
def bubble_sort(a: List[int]):
length = len(a)
if length <= 1:
return
for i in range(length):
made_swap = False
for j in range(length - i - 1):
if a[j] > a[j + 1]:
a[j], a[j + 1] = a[j + 1], a[j]
made_swap = True
if not made_swap:
break
选择排序
def selection_sort(a: List[int]):
length = len(a)
if length <= 1:
return
for i in range(length):
min_index = i
min_val = a[i]
for j in range(i, length):
if a[j] < min_val:
min_val = a[j]
min_index = j
a[i], a[min_index] = a[min_index], a[i]
二分查找
实现一个有序数组的二分查找算法
def bsearch(nums: List[int], target: int) -> int:
"""Binary search of a target in a sorted array
without duplicates. If such a target does not exist,
return -1, othewise, return its index.
"""
low, high = 0, len(nums) - 1
while low <= high:
mid = low + (high - low) // 2
if nums[mid] == target:
return mid
elif nums[mid] < target:
low = mid + 1
else:
high = mid - 1
return -1
实现模糊二分查找算法(比如大于等于给定值的第一个元素)
def bsearch_left_not_less(nums: List[int], target: int) -> int:
low, high = 0, len(nums) - 1
while low <= high:
mid = low + (high - low) // 2
if nums[mid] < target:
low = mid + 1
else:
high = mid - 1
if low < len(nums) and nums[low] >= target:
return low
else:
return -1