Stars
二维偏序问题
给定N个有序对(a,b),求对于每个(a,b),满足a2且b2的有序对(a2,b2)有多少个。
我们从归并排序求逆序对来引入二维偏序问题。
回忆一下归并排序求逆序对的过程,我们在合并两个子区间的时候,要考虑到左边区间的对右边区间的影响。即,我们每次从右边区间的有序序列中取出一个元素的时候,要把“以这个元素结尾的逆序对的个数”加上“左边区间有多少个元素比他大”。这是一个典型的CDQ分治的过程。
现在我们把这个问题拓展到二维偏序问题。在归并排序求逆序对的过程中,每个元素可以用一个有序对(a,b)表示,其中a表示数组中的位置,b表示该位置对应的值。我们求的就是“对于每个有序对(a,b),有多少个有序对(a2,b2)满足a2b”,这就是一个二维偏序问题。
注意到在求逆序对的问题中,a元素是默认有序的,即我们拿到元素的时候,数组中的元素是默认从第一个到最后一个按顺序排列的,所以我们才能在合并子问题的时候忽略a元素带来的影响。因为我们在合并两个子问题的过程中,左边区间的元素一定出现在右边区间的元素之前,即左边区间的元素的a都小于右边区间元素的a。
那么对于二维偏序问题,我们在拿到所有有序对(a,b)的时候,先把a元素从小到大排序。这时候问题就变成了“求顺序对”,因为a元素已经有序,可以忽略a元素带来的影响,和“求逆序对”的问题是一样的。
//#include
//#include
//#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include