- 学 Simulink:实时系统与嵌入式部署类场景ROS + Simulink 联合仿真的多传感器信号融合与滤波模块
amy_mhd
simulinkmatlab
目录ROS+Simulink联合仿真的多传感器信号融合与滤波模块场景目标✅准备工作软件安装:硬件准备(可选):步骤详解第一步:创建Simulink模型并配置ROS支持启用ROS工具箱支持:第二步:添加ROS输入接口(接收传感器数据)使用Subscribe模块接收ROSTopic数据:第三步:设计滤波与信号预处理模块方法一:IMU数据滤波(加速度+角速度)方法二:卡尔曼滤波器(KalmanFilte
- 【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波——附3个算法源码
1.卡尔曼滤波卡尔曼滤波是一种线性最优估计方法,用于估计动态系统的状态。在姿态解算中,我们可以使用卡尔曼滤波来融合陀螺仪和加速度计的数据,以获得更稳定的姿态估计。以下是一个简单的卡尔曼滤波器实现:```c#include"kalman.h"voidKalman_Init(Kalman_TypeDef*Kalman){Kalman->P[0][0]=1;Kalman->P[1][1]=1;Kalma
- 多目标跟踪
行走的小部落
目标跟踪人工智能计算机视觉
侦探联盟:多目标跟踪大作战适合对象:高中生关键点:多目标跟踪、传统方法、深度学习、卡尔曼滤波、匈牙利算法、CNN、Re-ID序章:神秘的闹市阴影夜晚的星城,一场盛大的街头音乐节即将开幕。灯光下,形形色色的人在广场上游走。人声、音乐声交织成宏大的交响。突然,警局接到一封匿名信:有人要在音乐节上搞破坏,还不止一个人。“多目标追踪联盟”火速集结:他们擅长在人群中盯梢,每一个侦探都有独特的本领。今天,他们
- 【SLAM】基于拓展卡尔曼滤波实现激光雷达传感器和角点提取的机器人定位附matlab代码
matlab科研社
机器人matlab数据结构
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍自主移动机器人定位是机器人学研究的核心问题之一。本文探讨了基于拓展卡尔曼滤波(EKF)融合激光雷达传感器数据和角点提取技术实现机器人定位的方法。通过深入分析激光雷达传感器的工
- 现代控制理论与应用:深入解析与实践指南
Hsmiau
本文还有配套的精品资源,点击获取简介:现代控制理论拓展了经典控制理论,专注于非线性、多变量、时变和随机系统的分析与设计。它涵盖了状态空间表示、线性时不变系统、李雅普诺夫稳定性、最优控制、卡尔曼滤波等关键概念。此外,还包括了处理非线性控制系统的多种方法,以及多变量系统和鲁棒控制的策略。自适应控制和智能控制则是现代控制理论中结合人工智能和机器学习的发展前沿。通过掌握这些理论和技术,学习者可以深入理解复
- 基于EKF的三自由度车辆定位算法解析与实践
南风寺山
本文还有配套的精品资源,点击获取简介:扩展卡尔曼滤波器(EKF)是处理非线性系统的有效算法,广泛应用于车辆定位、自动驾驶和机器人导航。本文档提供的源码针对车辆三自由度动态模型实现了EKF,通过传感器数据融合提高了车辆定位的精度。文档详细解析了EKF在车辆定位中的应用,从基础理论到算法流程,再到源码的具体实现,为开发者提供了深入学习EKF的机会,并展示了如何利用EKF实现精确的车辆定位。1.EKF基
- 使用MATLAB和Simulink来构建一个基于扩展卡尔曼滤波器(EKF)的定位系统
xiaoheshang_123
手把手教你学MATLAB专栏MATLAB开发项目实例1000例专栏matlabsimulink
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:定义传感器模型第三步:设计扩展卡尔曼滤波器(EKF)第四步:实现EKF控制器第五步:整合控制系统第六步:设置参考轨迹或姿态第七步:运行仿真并分析结果注意事项结论基于多传感器融合的卡尔曼滤波定位系统仿真可以帮助我们理解如何利用不同类型的传感器数据来提高四翼无人机(Quadcopter)的位置和姿态估计精度。在这个教程中,我们将使用M
- 登上Nature封面!强化学习+卡尔曼滤波上大分
Ai多利
卡尔曼滤波强化学习
2024深度学习发论文&模型涨点之——强化学习+卡尔曼滤波强化学习与卡尔曼滤波的结合在提高导航精度、适应复杂环境以及优化资源利用方面显示出明显优势,并且已经在多个领域中得到应用和验证。这种结合创新十分有前景,目前多篇成果被顶会顶刊录用,例如"Champion-leveldroneracingusingdeepreinforcementlearning”这篇登上Nature封面的文章详细描述了Swi
- 手把手教你学Simulink--多传感器融合与高级滤波场景(50.2):基于卡尔曼滤波(EKF)在非线性系统状态估计中的应用仿真
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学Simulinksimulink
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:定义非线性系统模型第三步:设计扩展卡尔曼滤波器(EKF)第四步:实现EKF控制器第五步:整合控制系统第六步:设置参考姿态或轨迹第七步:运行仿真并分析结果注意事项结论扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)是处理非线性系统状态估计的一种常用方法。EKF通过线性化非线性模型来近似标准的卡尔曼滤波过程,从而实现
- 深度学习篇---OC-SORT实际应用效果
Ronin-Lotus
深度学习篇上位机知识篇深度学习pythonOC-SROT
OC-SORT算法在实际应用中的效果可从准确性、鲁棒性、效率三个核心维度评估,其表现与传统多目标跟踪算法(如SORT、DeepSORT)相比有显著提升,尤其在复杂场景中优势突出。以下是具体分析:一、准确性:目标关联更可靠1.遮挡场景下的ID保持能力优势表现:传统算法(如SORT)依赖卡尔曼滤波预测目标位置,当目标长时间遮挡时,预测误差会累积导致轨迹丢失或ID切换。OC-SORT通过以观测为中心的恢
- 信号处理算法仿真:卡尔曼滤波算法_(2).卡尔曼滤波器的数学理论
kkchenkx
信号仿真2算法信号处理机器学习
卡尔曼滤波器的数学理论卡尔曼滤波器(KalmanFilter)是一种高效的递归滤波器,用于从一系列不完全和含有噪声的测量数据中估计系统的状态。它在许多领域都有广泛的应用,包括控制系统、导航系统、计算机视觉等。本节将详细介绍卡尔曼滤波器的数学理论,包括其基本假设、状态空间模型、预测和更新步骤以及具体实现方法。卡尔曼滤波器的基本假设卡尔曼滤波器基于以下基本假设:线性系统:系统的状态转移和测量过程都可以
- 信号处理算法仿真:卡尔曼滤波算法_(16).卡尔曼滤波器的优化技巧
kkchenkx
信号仿真2信号处理算法
卡尔曼滤波器的优化技巧在之前的内容中,我们已经介绍了卡尔曼滤波器的基本原理和实现方法。本节将重点讨论卡尔曼滤波器的优化技巧,这些技巧可以帮助我们在实际应用中提高滤波器的性能,减少计算复杂度,提高鲁棒性和稳定性。1.优化计算复杂度1.1.矩阵运算优化卡尔曼滤波器中的矩阵运算往往是一个计算瓶颈,尤其是在高维状态空间中。通过优化矩阵运算,可以显著提高算法的计算效率。1.1.1.矩阵求逆优化在卡尔曼滤波器
- 基于STM32F103单片机的小四轴飞行器开发
FrankFeng01
单片机stm32嵌入式硬件
序言本文采用STM32F103C8T6做主控芯片,整体控制思路分为以下四步:1、获取飞行器六轴数据:MPU6050采集飞行器原始六轴数据(三轴加速度、三轴角速度),通过卡尔曼滤波算法对加速度进行滤波、角速度采用一阶低通滤波。2、进行姿态解算:对滤波后的数据采用四元数姿态解算,得到飞行器姿态:欧拉角(翻滚角、俯仰角和偏航角)。3、获取手柄控制数据(期望值):通过NRF24L01无线模块,获取遥控手柄
- 粒子滤波器解读
DuHz
人工智能神经网络深度学习机器学习信号处理信息与通信
粒子滤波器解读引言粒子滤波器是一种强大的非线性滤波技术,用于估计动态系统的状态。与卡尔曼滤波器不同,粒子滤波器可以处理任意的非线性性和非高斯性,这使其在机器人定位、目标跟踪、计算机视觉等领域得到广泛应用。基本概念粒子滤波器的核心思想是使用一组加权样本(称为"粒子")来近似目标状态的后验概率分布。每个粒子代表状态空间中的一个可能状态,而其权重则表示该状态的可能性或概率。想象在一个迷雾中的森林里寻找宝
- 【MATLAB例程】线性卡尔曼滤波的程序,三维状态量和观测量,较为简单,可用于理解多维KF,附代码下载链接
MATLAB卡尔曼
卡尔曼专题免费专栏matlab开发语言
本文所述代码实现了一个三维状态的扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)算法。通过生成过程噪声和观测噪声,对真实状态进行滤波估计,同时对比了滤波前后状态量的误差和误差累积分布曲线。文章目录简介运行结果MATLAB源代码简介代码分为以下几个部分:初始化部分清理工作区环境,设置随机数种子,定义时间序列。定义过程噪声协方差矩阵Q和观测噪声协方差矩阵R。初始化真实状态矩阵X、观测
- 【MATLAB例程】线性卡尔曼滤波的程序,三维状态量和观测量,较为简单,可用于理解多维KF,订阅专栏后可直接查看完整代码
MATLAB卡尔曼
MATLAB定位程序与详解matlab开发语言
这段代码实现了一个三维状态的扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)算法。通过生成过程噪声和观测噪声,对真实状态进行滤波估计,同时对比了滤波前后状态量的误差和误差累积分布曲线。文章目录运行结果MATLAB源代码程序介绍代码逻辑结构代码详细介绍初始化部分运动模型扩展卡尔曼滤波(EKF)绘图误差输出运行结果状态量曲线:误差曲线:误差CDF曲线(越靠近左上表示误差整体越小):M
- 用STM32舞动精准世界:卡尔曼滤波器深度解析与应用
咎克冶Flower
用STM32舞动精准世界:卡尔曼滤波器深度解析与应用卡尔曼滤波.zip项目地址:https://gitcode.com/open-source-toolkit/abda0在追求精准数据处理的嵌入式领域,卡尔曼滤波算法犹如一盏明灯,照亮了在噪声中寻找真相的道路。今天,我们要详细介绍一个专门为STM32微控制器平台定制的卡尔曼滤波器实现,这是一款为解决嵌入式系统中复杂数据过滤挑战而生的强大工具。项目简
- 嵌入式十一种常用滤波算法
^Lek
嵌入式算法算法计算机视觉人工智能单片机c语言stm32
文章目录一、限幅滤波算法二、中位值滤波法三、算数平均滤波四、滑动窗口滤波器(递归平均滤波方法)五、中位值平均滤波法(防脉冲干扰平均滤波法)六一阶滞后滤波法(低通数字滤波)七、加权递推平均滤波法八、消抖滤波法九、带通滤波十、卡尔曼滤波十一、小波变换滤波 滤波(Filtering)是信号处理和图像处理中常用的一种技术,用于去除信号中的噪声、平滑信号或突出信号中的某些特征。滤波算法可以应用于多个领域,
- 从入门到登峰-嵌入式Tracker定位算法全景之旅 Part 1 |资源受限下的动态模型与卡尔曼滤波
damo王
嵌入式#算法机器学习人工智能卡尔曼滤波LBS定位
Part1|资源受限下的动态模型与卡尔曼滤波在本章中,我们聚焦ESP32-S3这样资源受限的MCU平台,深入剖析线性动态系统模型与卡尔曼滤波算法,并给出C语言定点/浮点实现方案,最后结合性能与功耗测试,帮助你在有限Flash、RAM和无硬件FPU的环境中跑起实时滤波器。一、动态系统与观测模型状态方程:状态向量(如位置、速度);
- 多协议 Tracker 系统架构与传感融合实战 第五章 卡尔曼滤波定位算法实战
damo王
嵌入式#多协议Tracker系统架构与传感融合实战算法卡尔曼滤波
第五章卡尔曼滤波定位算法实战摘要本章围绕IMU+UWB传感融合场景,全面讲解卡尔曼滤波(KF)、扩展卡尔曼滤波(EKF)与无迹卡尔曼滤波(UKF)的理论推导、模块化实现、性能对比与实战优化。内容涵盖:系统与观测模型构建一维/二维KF数学与代码EKF非线性扩展与Jacobi计算UKFSigma点设计与权重分配算法流程图(PlantUML)、C语言实现示例STM32H7上资源占用、运行性能、RMSE对
- YOLO学习笔记 | YOLOv8与卡尔曼滤波实现目标跟踪与预测(附代码)
单北斗SLAMer
YOLO学习从零到1目标检测目标跟踪YOLOpython
YOLOv8与卡尔曼滤波实现目标跟踪与预测一、原理与公式二、分模块代码实现1.**卡尔曼滤波模块**2.**目标检测模块(YOLOv8)**3.**跟踪器模块(SORT算法)**4.**主程序流程**三、关键优化点四、匈牙利算法原理与公式五、Python代码实现1.**基础版匈牙利算法(手动实现)**2.**优化版(基于`scipy`库)**六、在目标跟踪中的应用示例1.**代价矩阵计算(IOU)
- 卡尔曼滤波解释及示例
具身小站
算法卡尔曼滤波EKFUKFAKF
卡尔曼滤波的本质是用数学方法平衡预测与观测的可信度,通过不断迭代逼近真实状态。其高效性和鲁棒性,通常在导航定位中,需要融合GPS、加速度计、陀螺仪、激光雷达或摄像头数据,来提高位置精度。简单讲,卡尔曼滤波就是通过预测-更新循环,动态权衡模型预测与传感器测量,在噪声环境中实现最优估计,其数学本质是贝叶斯滤波在高斯噪声下的解析解。1.原理概述卡尔曼滤波的核心是递归地结合预测与测量,在存在噪声的系统中实
- 【数据融合】基于拓展卡尔曼滤波实现雷达与红外的异步融合附matlab代码
Matlab建模攻城师
数据融合算法matlab数据融合
一、问题分析与技术难点1.传感器特性对比传感器测量维度优势局限性噪声模型雷达距离$r$、方位角$\theta$、速度$v$测距精度高、全天候工作角度分辨率低、易受多径干扰高斯噪声,协方差矩阵$R_r=\text{diag}(\sigma_r^2,\sigma_\theta^2,\sigma_v^2)$红外方位角$\theta$、俯仰角$\phi$、温度$T$测角精度高、隐蔽性强受天气影响大、无测距
- 卡尔曼滤波入门(二)
qq_43133135
常用算法人工智能路径规划数学建模算法
核心思想卡尔曼滤波的核心就是在不确定中寻找最优,那么怎么定义最优呢?答案是均方误差最小的,便是最优。卡尔曼滤波本质上是一种动态系统状态估计器,它回答了这样一个问题:如何从充满噪声的观测数据中,还原出系统真实状态的最优估计?这一问题的解决融合了三个关键思想:贝叶斯推断:通过先验知识(系统模型)和观测数据(传感器信息)更新对状态的认知递归优化:以最小均方误差(MMSE)为目标,动态调整预测与观测的权重
- 【MATLAB】基于RSSI原理的Wi-Fi定位程序,N个锚点(数量可自适应)、三维空间,轨迹使用UKF进行滤波,附完整代码(订阅专栏后可直接复制粘贴)
MATLAB卡尔曼
MATLAB定位与滤波例程matlab开发语言
本程序实现了一种基于信号强度(RSSI)的Wi-Fi定位算法,并结合无迹卡尔曼滤波(UKF)对动态目标轨迹进行滤波优化。代码支持自适应锚点数量,适用于三维空间定位,可模拟目标运动、信号噪声及非线性观测场景,并通过可视化结果对比滤波前后的定位精度。文章目录运行结果MATLAB源代码代码说明核心功能代码结构创新点应用场景使用说明运行结果定位示意图:三轴误差示意图:RMSE对比图:MATLAB源代码</
- PX4飞控固件软硬件架构介绍
符旭煊Richard
PX4飞控固件软硬件架构介绍【下载地址】PX4飞控固件软硬件架构介绍PX4开源飞控固件是一款专为无人机设计的高性能控制系统,采用模块化架构,支持多种硬件平台。其硬件架构集成微控制器、传感器和通信接口,确保稳定飞行;软件架构涵盖驱动、控制、任务调度和通信模块,实现精准的飞行控制与任务管理。PX4支持多种接收器协议,如PPM、PWM和SBUS,并采用先进的PID控制和卡尔曼滤波算法,确保姿态稳定与位置
- 【MATLAB例程 完整代码】基于RSSI原理的Wi-Fi定位程序,N个锚点(数量可自适应)、三维空间,轨迹使用EKF进行滤波,文章中附完整的代码,订阅专栏后可复制粘贴
MATLAB卡尔曼
MATLAB定位与滤波例程matlab开发语言
基于RSSI原理的Wi-Fi定位程序,通过RSSI测距后使用三边法定位,为了方便读者修改,锚点数量可自适应调整(>3个即可)。适用范围为三维空间,轨迹使用EKF(扩展卡尔曼滤波)进行滤波,模拟wifi与IMU的数据融合文章目录运行结果MATLAB源代码程序介绍代码概述核心模块解析环境初始化与参数设置目标运动与RSSI测量定位算法实现扩展卡尔曼滤波(EKF)扩展建议运行结果定位与滤波结果示意图:误差
- 卡尔曼滤波解算欧拉角(去积分漂移版本)
阿让啊
IMU算法
近期在做模拟IIC读取QMI8658六轴传感器数据,滤波融合解算姿态角:项目要求:①去除零漂移、②去除陀螺仪积分漂移、③输出横滚角roll、俯仰角Pitch(无磁力计故此无yaw角),角度单位(度)先看结果:因为是个人座面未完全水平,近似为0,输出稳定,没有积分漂移!收敛速度可调节卡尔曼中协方差Q、R值。在QMI数据读取中采样了10位数据求平均的均值滤波:/********************
- Kalman算法、扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)的比较
dragon_perfect
技术积累经典kalman的扩展应用kalmanpythonkalman算法
目录一、Kalman算法Kalman算法优缺点:二、扩展卡尔曼滤波(EKF)原理:扩展Kalman算法优缺点:步骤简化:优点简化:缺点简化:三、无迹卡尔曼滤波(UKF)Unscented滤波的主要优点:原理:步骤:优点:缺点:四、对比总结:五、选择建议六、示例应用七、代码资源一、Kalman算法卡尔曼(Kalman)于1960年提出的,卡尔曼(Kalman)滤波是一种线性最小方差估计。该递推算法可
- 【课题推荐】深度学习驱动的交通流量预测系统
MATLAB卡尔曼
课题推荐与讲解深度学习人工智能
文章目录MATLAB源代码关键特性说明以下是一个集成数据预处理、LSTM建模和卡尔曼滤波优化的交通流量预测MATLAB例程,所有功能集成在单个文件中便于调试:MATLAB源代码%%交通流量预测系统集成例程%包含LSTM建模、数据预处理、卡尔曼滤波优化和可视化clearvars;closeall;clc%%数据加载与预处理data=readtable('traffic_flow.csv');%加载C
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe