置换 2020牛客暑期多校训练营(第二场)J Just Shuffle

置换 2020牛客暑期多校训练营(第二场)J Just Shuffle

标签: 置换 JAVA大数 逆元 快速幂


题意:P为一个置换, P k = A P^k=A Pk=A,k是素数,求P
k是大素数,所以A的每个轮换的周期都小于k且与k互素,因此A的周期与k互素,我们可以构造x为k对于A周期m的逆元
x k ≡ 1 ( m o d m ) xk\equiv1\pmod m xk1(modm)
A x k = A A^{xk}=A Axk=A
A x A^x Ax则为我们想要的P
只要先解出x,快速幂求 A x A^x Ax就可以作为一个答案

import java.math.BigInteger;
import java.util.*;

public class Main {
	final static int maxn=200100;
	static int a[]=new int[maxn];
	static int a_copy[]=new int[maxn];
	static int ans[]=new int[maxn];
	static int ans_copy[]=new int[maxn];
	static boolean vis[]=new boolean[maxn];
	static BigInteger d,x,y;
	static int n;
	public static void main(String args[]) {
		BigInteger k;
		Scanner input=new Scanner(System.in);
		n=input.nextInt();
		k=input.nextBigInteger();
		for(int i=1;i<=n;i++) {
			a[i]=input.nextInt();
			ans[i]=i;
		}
		BigInteger LCM=BigInteger.ONE;
		for(int i=1;i<=n;i++) {
			if(!vis[i]) {
	            long cnt=0;
	            int cur=i;
	            while(!vis[cur]){
	                vis[cur]=true;
	                cnt++;
	                cur=a[cur];
	            }
	            LCM=lcm(LCM,BigInteger.valueOf(cnt));
			}
		}
		BigInteger x=inverse(k,LCM);
	    if(x.longValue()==-1){
	        System.out.println("-1");
	    }
	    else {
		    quick_pow(x);
		    for(int i=1;i<=n;i++){
		        System.out.print(ans[i]);
		        if(i==n)
		        	System.out.print("\n");
		        else
		        	System.out.print(" ");
		    }
	    }
	}
	
	public static BigInteger lcm(BigInteger x,BigInteger y) {
		return x.multiply(y).divide(x.gcd(y));
	}
	
	public static BigInteger[] extgcd(BigInteger a,BigInteger b){
		BigInteger[] tmp=new BigInteger[3];
		if(b.longValue()==0){ 
	    	tmp[0]=a; 
	    	tmp[1]=BigInteger.ONE; 
	    	tmp[2]=BigInteger.ZERO;
	    }
	    else{
	        tmp=extgcd(b,a.mod(b));
	        BigInteger Tmp=tmp[1];
	        tmp[1]=tmp[2];
	        tmp[2]=Tmp;
	        tmp[2]=tmp[2].subtract(tmp[1].multiply(a.divide(b)));
	    }
		return tmp;
	}
	public static BigInteger inverse(BigInteger a,BigInteger n){
	    BigInteger[] tmp=new BigInteger[3];
	    tmp=extgcd(a,n);
	    if(tmp[0].longValue()==1){
	         tmp[1] = (tmp[1].mod(n).add(n)).mod(n);
	         if(tmp[1].longValue()==0)
	            tmp[1]=tmp[1].add(n);
	    }
	    else
	        tmp[1] = BigInteger.valueOf(-1);
	    return tmp[1];
	}
	
	public static void quick_pow(BigInteger x){
	    while(x!=BigInteger.ZERO){
	        if(x.mod(BigInteger.valueOf(2)).longValue()==1){
	            for(int i=1;i<=n;i++){
	                ans_copy[i]=ans[i];
	            }
	            for(int i=1;i<=n;i++){
	                ans[i]=ans_copy[a[i]];
	            }
	        }
	        for(int i=1;i<=n;i++){
	            a_copy[i]=a[i];
	        }
	        for(int i=1;i<=n;i++){
	            a[i]=a_copy[a_copy[i]];
	        }
	        x=x.divide(BigInteger.valueOf(2));
	    }
	}
}

你可能感兴趣的:(刷题之路)