- 【TensorRT】TensorRT及加速原理
浩瀚之水_csdn
tensorrt
一、TensorRT架构概览TensorRT是NVIDIA推出的高性能推理优化器,专为GPU加速设计。其核心架构分为三层:前端解析器支持ONNX/UFF/Caffe等格式的模型解析执行格式验证和初步结构优化优化引擎核心优化层(层融合、精度校准、内存优化等)生成优化后的计算图(OptimizedGraph)运行时环境管理GPU内存分配执行优化后的计算图二、核心加速原理(8大关键技术)1.层融合(La
- Redis+Caffeine双层缓存策略对比与实践指南
浅沫云归
后端技术栈小结RedisCaffeine缓存
Redis+Caffeine双层缓存策略对比与实践指南在高并发场景下,缓存是提升系统性能和并发处理能力的关键手段。常见的缓存方案包括远程缓存(如Redis)和本地缓存(如Caffeine)。单层缓存各有优劣,结合两者优势的双层缓存架构已成为生产环境中的最佳实践。本文将基于SpringBoot,从方案对比分析出发,深入探讨Redis、本地Caffeine与双层缓存的实现与性能差异,并给出选型建议与实
- spring boot + caffeine使用
月光一族吖
springbootspringjava
一、Caffeine缓存背景Caffeine是一个高性能、可扩展的Java缓存库,由Google的BenManes开发。Caffeine基于ConcurrentHashMap设计,采用了近似LRU(LeastRecentlyUsed,最近最少使用)算法,以实现高速缓存淘汰策略。Caffeine广泛应用于各类Java项目中,作为一种提高数据读取性能的优秀解决方案。二、Caffeine缓存优点与缺点优
- 两级缓存 Caffeine + Redis 架构:原理、实现与实践
大只鹅
缓存redis架构
一、前言在高性能服务架构设计里,缓存是关键环节。常规做法是将热点数据存于Redis/MemCache等远程缓存,缓存未命中时再查数据库,以此提升访问速度、降低数据库压力。随着发展,架构有了改进,部分场景下单纯远程缓存不够,需结合本地缓存(如Guavacache、Caffeine),形成本地缓存(一级缓存)+远程缓存(二级缓存)的两级缓存架构,进一步提升程序响应与服务性能,其基础访问流程如下(暂不考
- Ehcache、Caffeine、Spring Cache、Redis、J2Cache、Memcached 和 Guava Cache 的主要区别
MonkeyKing.sun
springredismemcached
主流缓存技术Ehcache、Caffeine、SpringCache、Redis、J2Cache、Memcached和GuavaCache的主要区别,涵盖其架构、功能、适用场景和优缺点等方面:Ehcache类型:本地缓存(JVM内存缓存)特点:轻量级,运行在JVM内部,易于集成到Java应用中。支持堆内、堆外和磁盘缓存,适合处理中小型数据集。提供丰富的缓存配置,如TTL(生存时间)、TTI(空闲时
- 《高并发系统性能优化三板斧:缓存 + 异步 + 限流》
猕员桃
10篇关于分布式和高并发性能优化缓存
高并发系统性能优化三板斧:缓存+异步+限流引言在互联网应用的高并发场景下,系统性能面临巨大挑战。以某电商平台会员活动为例,活动期间瞬时QPS可达10万+,若未进行有效优化,服务器将迅速崩溃。本文从缓存、异步、限流三个核心维度,结合实际案例详细解析高并发系统的性能优化策略,并分享全链路压测与问题定位的实战经验。一、缓存策略分层:从本地到分布式的立体防护1.1本地缓存选型与实战(Caffeine)本地
- 2.6 Spring Boot缓存实战:Redis与Caffeine性能对比
SpringBoot缓存实战:Redis与Caffeine深度性能对比一、缓存技术选型核心指标维度Redis(分布式)Caffeine(本地)数据存储位置独立内存服务器应用进程堆内存数据一致性强一致(集群版)最终一致(需额外同步)网络开销存在TCP/IP通信无网络延迟数据容量支持TB级存储受限于JVM堆大小数据结构支持5种核心数据结构仅Key-Value结构持久化能力RDB/AOF需结合其他存储二
- 深入实践Caffeine+Redis两级缓存架构:从原理到高可用设计
搬砖的小熊猫
缓存redis架构
一、为何需要两级缓存架构?在分布式系统中,Redis作为分布式缓存已广泛应用。但当系统面临超高并发读取(如热点商品详情页访问)或超低延迟要求(如金融行情数据推送)时,纯远程缓存面临两大瓶颈:网络IO开销:每次Redis访问需10-50ms的网络延迟带宽瓶颈:单节点Redis吞吐量上限约10万QPS通过引入Caffeine本地缓存作为一级缓存,Redis作为二级缓存,可实现:命中未命中命中未命中客户
- python opencv rgb_opencv-python的RGB与BGR互转方式
weixin_39798497
pythonopencvrgb
一、格式转换opencv读取图片的默认像素排列是BGR,需要转换。PIL库是RGB格式。caffe底层的图像处理是基于opencv,其使用的颜色通道顺序与也是BGR(Blue-Green-Red),而日常图片存储时颜色通道顺序是RGB。在Python中,将RGB顺序的图像转成BGR顺序,需要调整channeldimension的各颜色通道顺序。方法1:img=cv2.imread("001.jpg
- caffe之利用mnist数据集训练好的lenet_iter_10000.caffemodel模型测试一张自己的手写体数字
xunan003
深度学习caffe
一、前沿写这篇博文,是因为一开始在做《21天学习caffe》第6天6.4练习题1的时候看着自己搜索的博文,在不理解其根本的情况下做的,结果显然是错的。在接下来阅读完源代码之后,在第10天学习完caffemodelzoo之后,明白了其中原理,反过来再去做那个习题,一开始在网上搜索并没有完完整整解释整个过程的一篇博文,而是写的不知所云,本着我们初学者互相共享的精神,也方便自己查阅,特详细写一下,将自己
- caffe安装:基于anaconda3---python3.6, linux, 仅CPU
喵酱ooo
目标检测caffeanaconda3python3.6linuxCPU
caffe安装:基于anaconda3---python3.6,linux,仅CPUcaffe安装安装Anaconda3下载caffe配置caffe的Makefile.config安装libboost(基于python3.6)的库编译caffecaffe安装安装Anaconda3下载:Anaconda3-5.0.1-Linux-x86_64.sh默认路径安装(最终安装位置为/home/usenam
- ubuntu 编译caffe makefile.config
AI算法网奇
win/ubuntu
这个是我以前总结的:sudoapt-getinstall-ylibopencv-devpython-opencvsudoapt-getinstall-ybuild-essentialcmakegitpkg-configsudoapt-getinstall-ylibatlas-base-devsudoapt-getinstall-ylibgflags-devlibgoogle-glog-devlib
- caffe中Makefile.config详解
《一夜飘零》
##Refertohttp://caffe.berkeleyvision.org/installation.html#Contributionssimplifyingandimprovingourbuildsystemarewelcome!#cuDNNaccelerationswitch(uncommenttobuildwithcuDNN).#USE_CUDNN:=1"CuDNN是NVIDIA专门
- 【性能飙升】Caffeine缓存框架:SpringBoot的高性能秘籍!
码农Q!
程序员JavaIT缓存springbootspringwindows开发语言javalist
高性能Java本地缓存Caffeine框架介绍及在SpringBoot中的使用代码加详解1.引包importcom.github.benmanes.caffeine.cache.Cache;importcom.github.benmanes.caffeine.cache.Caffeine;importorg.springframework.beans.factory.annotation.Auto
- 一站式讲解本地缓存Caffeine
想用offer打牌
后台缓存缓存
文章目录theme:condensed-night-purple引言本地缓存的必要性多级缓存访问流程使用Caffeine作为本地缓存️添加**SpringCache和Guava依赖**配置Caffeine缓存启用缓存使用缓存注解总结❤️theme:condensed-night-purple引言上次我们讲了本地缓存guava,那么有没有比它更加优秀的本地缓存呢?有的,兄弟,有的。这次我们来讲本地
- 开放词汇检测分割YOLOE从pytorch到caffe
wangxiaobei2017
深度学习训练与移植pytorchcaffe人工智能
开放词汇检测分割YOLOE从pytorch到caffe0.前沿开放词汇检测的概念CLIP模型1.YOLOE环境配置1.1虚拟环境1.2YOLOE模型推理测试1.2.1文本提示检测和分割测试1.2.2无提示检测和分割2.YOLOE网络结构分析2.1网络结构概述2.2可重参数化区域-文本对齐(Re-parameterizableregion-textalignment:RepRTA)2.3语义激活视觉
- 本地缓存Caffeine的基本使用
海光之蓝
工具类spring
1.本地缓存有ehcache,guavacache,caffein这几种常用的实现,下面介绍caffeine在springboot中的使用caffeine官网:github-caffeinjsr-107缓存规范与spring的对照:jsr-107缓存规范与spring的对照caffeine-plus:caffeine-plus单独使用:2.添加依赖com.github.ben-manes.caff
- Web 架构之缓存策略实战:从本地缓存到分布式缓存
互联网搬砖工老肖
web架构原力计划前端架构缓存
文章目录一、思维导图二、正文内容(一)本地缓存1.简介2.常见实现3.使用场景4.优缺点(二)分布式缓存1.简介2.常见实现3.使用场景4.优缺点5.缓存问题及解决方案三、总结一、思维导图缓存策略实战本地缓存分布式缓存简介常见实现使用场景优缺点GuavaCacheCaffeine简介常见实现使用场景优缺点RedisMemcached缓存穿透缓存击穿缓存雪崩解决方案解决方案解决方案二、正文内容(一)
- 解锁Java多级缓存:性能飞升的秘密武器
bxlj_jcj
缓存面试架构缓存架构java面试
一、引言文末有彩蛋在当今高并发、低延迟的应用场景中,传统的单级缓存策略往往难以满足性能需求。随着系统规模扩大,数据访问的瓶颈逐渐显现,如何高效管理缓存成为开发者面临的重大挑战。多级缓存架构应运而生,通过分层缓存设计(如本地缓存+分布式缓存+后端存储),显著减少网络开销、降低数据库压力,成为提升Java应用性能的“秘密武器”。本文将深入剖析多级缓存的核心理念,结合Caffeine、Redis等主流技
- Spring Boot缓存组件Ehcache、Caffeine、Redis、Hazelcast
一只帆記
SpringBoot缓存springbootredis
一、SpringBoot缓存架构核心SpringBoot通过spring-boot-starter-cache提供统一的缓存抽象层:业务代码CacheAbstractionCacheManagerCacheImplementationEhcacheCaffeineRedisHazelcast二、主流缓存工具深度对比特性EhcacheCaffeineRedisHazelcast类型本地缓存本地缓存分
- 【Redis】热点key问题,的原因和处理,一致性哈希,删除大key的方法
{⌐■_■}
redisredis哈希算法数据库
热点Key指单个Key被高并发访问(如爆款商品),导致Redis压力骤增。解决方案应针对“单个Key高并发”:分片缓存:将热点Key分散到不同Redis节点(如按一致性哈希算法分片)。本地缓存:在应用层缓存热点数据(如Caffeine),减少Redis压力。增加缓存副本:为热点数据增加缓存副本,将热点数据复制到多个缓存节点上,分散访问压力。(例如,使用Redis的主从复制,将热点数据存储在多个从节
- 在Windows系统下安装caffe
sunmingliu
最近,在怼着球面卷积神经网络源码看,虽然不出意外的看傻了,但caffe的安装还是需要记录一下的。一开始我是想在Linux系统下实现的,毕竟一开始我把电脑一大块空间给了Linux系统。于是我先颠颠的照着网上的教程把anaconda先安装了。anaconda在Linux下的安装还顺道下了一个COCO数据集,官网没法正常打开,就找到了一个不需要的下载方法,贴一个链接:简单的MSCOCO数据集下载方法然后
- 深度学习FPGA开发方式
jack_201316888
FPGAAI
https://blog.csdn.net/weixin_35729512/article/details/79763952FPGA深度学习的方向概述传统的CNN(Tensorflow、caffe)是在GPU、CPU上面进行的,但因为其功耗高、散热不好、价格昂贵。但是在单纯的FPGA这类芯片上进行深度学习类的算法,往往开发难度大,开发周期漫长,不适合CNN算法的实现。CNN算法的步骤划分,训练(P
- Caffeine 深度解析:从核心原理到生产实践
Pasregret
缓存缓存java面试
Caffeine深度解析:从核心原理到生产实践一、Caffeine核心定位与架构设计1.核心能力矩阵深度解析Caffeine作为Java领域高性能本地缓存库,其设计目标围绕高吞吐量、低延迟、高效内存管理展开,核心能力可从技术特性与业务价值两个维度拆解:缓存策略先进性WindowTinyLfu回收算法:结合时间窗口(Window)与TinyLfu频率统计,相比传统LRU提升10%-15%命中率,尤其
- 多级缓存架构深度解析:从设计原理到生产实践
Pasregret
缓存缓存架构
多级缓存架构深度解析:从设计原理到生产实践一、多级缓存架构核心定位与设计原则1.架构分层与角色定位多级缓存通过分层存储、流量削峰、数据分级实现性能与成本的平衡,典型三层架构如下:层级代表组件存储介质数据特征命中目标成本级别一级缓存Caffeine/Guava本地堆内存热数据(访问量前10%)70%+高二级缓存Redis远程内存温数据(访问量20%-30%)25%+中三级缓存MySQL/ES磁盘/S
- 搭建Caffeine+Redis多级缓存机制
moxiaoran5753
缓存redis数据库
本地缓存的简单实现方案有HashMap,CucurrentHashMap,成熟的本地缓存方案有Guava与Caffeine,企业级应用推荐下面说下两者的区别1.核心异同对比特性GuavaCacheCaffeine诞生背景GoogleGuava库的一部分(2011年)基于GuavaCache重构的现代缓存库(2015+)性能中等(锁竞争较多)极高(优化并发设计,吞吐量提升5~10倍)内存管理基于LR
- 3.JVM调优与内存管理
zizisuo
java
目录一、缓存场景下的内存管理核心挑战堆内缓存与堆外缓存的取舍•堆内缓存(Caffeine/Guava)的GC压力分析•堆外缓存(EhcacheOffheap/MapDB)的内存泄漏防护•混合缓存架构的性能与资源平衡高并发下的内存分配优化•TLAB(Thread-LocalAllocationBuffer)与缓存对象分配效率•大对象(缓存Value)直接进入老年代的策略•年轻代与老年代比例调优(避免
- OpenCV学习笔记:使用OpenCV的DNN模块调用Caffe进行人脸识别
EbCoder
机器学习-深度学习
在计算机视觉和图像处理领域,人脸识别是一个重要的任务。OpenCV是一个广泛使用的开源计算机视觉库,它提供了强大的功能来处理图像和视频。OpenCV的DNN(深度神经网络)模块允许我们使用已经训练好的深度学习模型进行图像识别任务。本文将介绍如何使用OpenCV的DNN模块调用Caffe框架训练的人脸识别模型。首先,我们需要安装OpenCV和Caffe。确保您已经正确安装了这两个库,并且已经配置好了
- 华为海思系列----昇腾张量编译器(ATC)模型转换工具----入门级使用指南(LINUX版)
不想起名字呢
linuxc++海思ss928atc模型转换
由于官方SDK比较冗余且经常跨文档讲解且SDK整理的乱七八糟,对于新手来说全部看完上手成本较高,本文旨在以简短的方式介绍CAFFE/ONNX模型转om模型,并进行推理的全流程。希望能够帮助到第一次接触华为海思框架的道友们。大佬们就没必要看这种基础文章啦!注:本文所有操作均在WSL(Windows虚拟子系统)上操作的,默认root环境,默认开发板系统为LINUX,所有环境变量均写入bashrc,非虚
- SpringBoot+SpringCache实现两级缓存(Redis+Caffeine)
xfgg
java
1.缓存、两级缓存1.1内容说明Springcache:主要包含springcache定义的接口方法说明和注解中的属性说明springboot+springcache:rediscache实现中的缺陷caffeine简介springboot+springcache实现两级缓存使用缓存时的流程图1.2SpingCachespringcache是spring-context包中提供的基于注解方式使用的
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数