一、环境:
操作系统版本:SUSE Linux Enterprise Server 11 (x86_64) SP3
主机名:
192.168.0.10 node1
192.168.0.11 node2
192.168.0.12 node3
192.168.0.13 node4
软件路径:/data/install
Hadoop
集群路径:/data
JAVA_HOME
路径:/usr/jdk1.8.0_66
版本
组件名
|
版本
|
说明
|
JRE
|
jdk-8u66-linux-x64.tar.gz
|
|
zookeeper
|
zookeeper-3.4.6.tar.gz
|
|
Hadoop
|
hadoop-2.7.3.tar.gz
|
主程序包
|
spark
|
spark-2.0.2-bin-hadoop2.7.tgz
|
|
hbase
|
hbase-1.2.5-bin.tar.gz
|
|
一、
常用命令
1.
查看系统版本:
linux-n4ga:~ # uname –a #
内核版本
Linux node1 3.0.76-0.11-default #1 SMP Fri Jun 14 08:21:43 UTC 2013 (ccab990) x86_64 x86_64 x86_64 GNU/Linux
linux-n4ga:~ # lsb_release #
发行版本
LSB Version: core-2.0-noarch:core-3.2-noarch:core-4.0-noarch:core-2.0-x86_64:core-3.2-x86_64:core-4.0-x86_64:desktop-4.0-amd64:desktop-4.0-noarch:graphics-2.0-amd64:graphics-2.0-noarch:graphics-3.2-amd64:graphics-3.2-noarch:graphics-4.0-amd64:graphics-4.0-noarch
linux-n4ga:~ # cat /etc/SuSE-release #
补丁版本
SUSE Linux Enterprise Server 11 (x86_64)
VERSION = 11
PATCHLEVEL = 3
node1:~ # cat /etc/issue
Welcome to SUSE Linux Enterprise Server 11 SP3 (x86_64) - Kernel \r (\l).
node1:~ #
2.
启动集群
start-dfs.sh
start-yarn.sh
3.
关闭集群
stop-yarn.sh
stop-dfs.sh
4.
监控集群
hdfs dfsadmin -report
5.
单个进程启动
/
关闭
hadoop-daemon.sh start|stop namenode|datanode| journalnode
yarn-daemon.sh start |stop resourcemanager|nodemanager
http://blog.chinaunix.net/uid-25723371-id-4943894.html
二、
环境准备(所有服务器)
6.
关闭防火墙并禁止开机自启动
linux-n4ga:~ # rcSuSEfirewall2 stop
Shutting down the Firewall done
linux-n4ga:~ # chkconfig SuSEfirewall2_setup off
linux-n4ga:~ # chkconfig SuSEfirewall2_init off
linux-n4ga:~ # chkconfig --list|grep fire
SuSEfirewall2_init 0:off 1:off 2:off 3:off 4:off 5:off 6:off
SuSEfirewall2_setup 0:off 1:off 2:off 3:off 4:off 5:off 6:off
7.
设置主机名(其它类似)
linux-n4ga:~ # hostname node1
linux-n4ga:~ # vim /etc/HOSTNAME
node1.site
8.
ssh
免密登陆
node1:~ # ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
node1:~ # cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
node1:~ # ll -d .ssh/
drwx------ 2 root root 4096 Jun 5 08:50 .ssh/
node1:~ # ll .ssh/
total 12
-rw-r--r-- 1 root root 599 Jun 5 08:50 authorized_keys
-rw------- 1 root root 672 Jun 5 08:50 id_dsa
-rw-r--r-- 1 root root 599 Jun 5 08:50 id_dsa.pub
把其它服务器的~/.ssh/id_dsa.pub
内容也追加到node1
服务器的~/.ssh/authorized_keys
文件中,然后分发
9.
修改
hosts
文件
node1:~ # vim /etc/hosts
… …
ff02::2 ipv6-allrouters
ff02::3 ipv6-allhosts
192.168.0.10 node1
192.168.0.11 node2
192.168.0.12 node3
192.168.0.13 node4
分发:
10.
修改文件句柄数
node1:~ # vim /etc/security/limits.conf
* soft nofile 24000
* hard nofile 65535
* soft nproc 24000
* hard nproc 65535
node1:~ # source /etc/security/limits.conf
node1:~ # ulimit -n
24000
11.
时间同步
测试(举例)
node1 :~ # /usr/sbin/ntpdate 192.168.0.10
13 Jun 13:49:41 ntpdate[8370]: adjust time server 192.168.0.10 offset -0.007294 sec
添加定时任务
node1 :~ # crontab –e
*/10 * * * * /usr/sbin/ntpdate 192.168.0.10 > /dev/null 2>&1;/sbin/hwclock -w
node1:~ # service cron restart
Shutting down CRON daemon done
Starting CRON daemon done
node1:~ # date
Tue Jun 13 05:32:49 CST 2017
node1:~ #
12.
上传安装包到
node1
服务器
node1:~ # mkdir –pv /data/install
node1:~ # cd /data/install
node1:~ # pwd
/data/install
上传安装包到/data/install
目录下
node1:/data/install # ll
total 671968
-rw-r--r-- 1 root root 214092195 Jun 5 05:40 hadoop-2.7.3.tar.gz
-rw-r--r-- 1 root root 104584366 Jun 5 05:40 hbase-1.2.5-bin.tar.gz
-rw-r--r-- 1 root root 181287376 Jun 5 05:47 jdk-8u66-linux-x64.tar.gz
-rw-r--r-- 1 root root 187426587 Jun 5 05:40 spark-2.0.2-bin-hadoop2.7.tgz
-rw-r--r-- 1 root root 187426587 Jun 5 05:40 zookeeper-3.4.6.tar.gz
13.
安装
JDK
node1:~ # cd /data/install
node1:/data/install # tar -zxvf jdk-8u66-linux-x64.tar.gz -C /usr/
配置环境变量
node1:/data/install #vim /etc/profile
export JAVA_HOME=/usr/jdk1.8.0_66
export HADOOP_HOME=/data/hadoop-2.7.3
export HBASE_HOME=/data/hbase-1.2.5
export SPARK_HOME=/data/spark-2.0.2
export ZOOKEEPER_HOME=/data/zookeeper-3.4.6
export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib:$JAVA_HOME/jre/lib
export PATH=$ZOOKEEPER_HOME/bin:$PATH
export PATH=$HBASE_HOME/bin:$PATH
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
export PATH=$SPARK_HOME/bin:$PATH
node1:/opt # source /etc/profile
node1:~ # java –version #
验证
java version "1.8.0_66"
Java(TM) SE Runtime Environment (build 1.8.0_66-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.66-b17, mixed mode)
node1:~ # echo $JAVA_HOME
/usr/jdk1.8.0_66
三、
安装
zookeeper
14.
解压
zookeeper
node1:~ # cd /data/install
node1:/data/install # tar -zxvf zookeeper-3.4.6.tar.gz -C /data/
15.
配置
zoo.cfg
文件
node1:/data/install # cd /data/zookeeper-3.4.6/conf/ #
进入conf
目录
node1: /data/zookeeper-3.4.6/conf/ # cp zoo_sample.cfg zoo.cfg #
拷贝模板
node1: /data/zookeeper-3.4.6/conf/ # vi zoo.cfg
# The number of millinode2s of each tick
tickTime=2000
# The number of ticks that the initial
# synchronization phase can take
initLimit=10
# The number of ticks that can pass between
# sending a request and getting an acknowledgement
syncLimit=5
# the directory where the snapshot is stored.
# do not use /tmp for storage, /tmp here is just
# example sakes.
dataDir=/data/zookeeper-3.4.6/data
dataLogDir=/data/zookeeper-3.4.6/dataLog
# the port at which the clients will connect
clientPort=2181
# the maximum number of client connections.
# increase this if you need to handle more clients
#maxClientCnxns=60
#
# Be sure to read the maintenance section of the
# administrator guide before turning on autopurge.
#
# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
#
# The number of snapshots to retain in dataDir
#autopurge.snapRetainCount=3
# Purge task interval in hours
# Set to "0" to disable auto purge feature
#autopurge.purgeInterval=1
server.1=node1:2888:3888
server.2=node2:2888:3888
server.3=node3:2888:3888
16.
添加
myid
,分发
(
安装个数为奇数
)
创建指定目录:dataDir
目录下增加myid
文件;myid
中写当前zookeeper
服务的id,
因为server.1=node1:2888:3888 server指定的是1,
node1: /data/zookeeper-3.4.6/conf/ # mkdir –pv /data/zookeeper-3.4.6/{data, dataLog}
node1: /data/zookeeper-3.4.6/conf/ # echo 1 > /data/zookeeper-3.4.6/data/myid
17.
分发:
node1: /data/zookeeper-3.4.6/conf/ # scp -rp /data/zookeeper-3.4.6
[email protected]:/data
node1: /data/zookeeper-3.4.6/conf/ # scp -rp /data/zookeeper-3.4.6
[email protected]:/data
在其余机子配置,node2
下面的myid
是2
,node3
下面myid
是3
,这些都是根据server
来的
node2: /data/zookeeper-3.4.6/conf/ # echo 2 > /data/zookeeper-3.4.6/data/myid
node3: /data/zookeeper-3.4.6/conf/ # echo 3> /data/zookeeper-3.4.6/data/myid
四、
安装
Hadoop
18.
解压
hadoop
node1:~ # cd /data/install
node1:/data/install # tar -zxvf hadoop-2.7.3.tar.gz -C /data/
19.
配置
hadoop-env.sh
node1:~ # vim /data/hadoop-2.7.3/etc/hadoop/hadoop-env.sh
export JAVA_HOME=/usr/jdk1.8.0_66
20.
配置
core-site.xml
node1:~ # vim /data/hadoop-2.7.3/etc/hadoop/core-site.xml
hdfs:
//mycluster
hadoop.tmp.dir
/data/hadoop-2.7.3/data/tmp
ha.zookeeper.quorum
node1:2181,node2:2181,node3:2181
zookeeper
客户端连接地址
ha.zookeeper.session-timeout.ms
10000
fs.trash.interval
1440
以分钟为单位的垃圾回收时间,垃圾站中数据超过此时间,会被删除。如果是0
,垃圾回收机制关闭。
fs.trash.checkpoint.interval
1440
以分钟为单位的垃圾回收检查间隔。
21.
配置
yarn-site.xml
node1:~ #
vim /data/hadoop-2.7.3/etc/
hadoop/yarn-site.xml #
yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms
5000
schelduler
失联等待连接时间
yarn.nodemanager.aux-services
mapreduce_shuffle
NodeManager
上运行的附属服务。需配置成
mapreduce_shuffle
,才可运行
MapReduce
程序
yarn.resourcemanager.ha.enabled
true
是否启用
RM HA
,默认为
false
(不启用)
yarn.resourcemanager.cluster-id
cluster1
集群的
Id
,
elector
使用该值确保
RM
不会做为其它集群的
active
。
yarn.resourcemanager.ha.rm-ids
rm1,rm2
RMs
的逻辑
id
列表
,
用逗号分隔
,
如
:rm1,rm2
yarn.resourcemanager.hostname.rm1
node3
RM
的
hostname
yarn.resourcemanager.scheduler.address.rm1
${yarn.resourcemanager.hostname.rm1}:8030
RM
对
AM
暴露的地址
,AM
通过地址想
RM
申请资源
,
释放资源等
yarn.resourcemanager.resource-tracker.address.rm1
${yarn.resourcemanager.hostname.rm1}:8031
RM
对
NM
暴露地址
,NM
通过该地址向
RM
汇报心跳
,
领取任务等
yarn.resourcemanager.address.rm1
${yarn.resourcemanager.hostname.rm1}:8032
RM
对客户端暴露的地址
,
客户端通过该地址向
RM
提交应用程序等
yarn.resourcemanager.admin.address.rm1
${yarn.resourcemanager.hostname.rm1}:8033
RM
对管理员暴露的地址
.
管理员通过该地址向
RM
发送管理命令等
yarn.resourcemanager.webapp.address.rm1
${yarn.resourcemanager.hostname.rm1}:8088
RM
对外暴露的
web http
地址,用户可通过该地址在浏览器中查看集群信息
yarn.resourcemanager.hostname.rm2
node4
yarn.resourcemanager.scheduler.address.rm2
${yarn.resourcemanager.hostname.rm2}:8030
yarn.resourcemanager.resource-tracker.address.rm2
${yarn.resourcemanager.hostname.rm2}:8031
yarn.resourcemanager.address.rm2
${yarn.resourcemanager.hostname.rm2}:8032
yarn.resourcemanager.admin.address.rm2
${yarn.resourcemanager.hostname.rm2}:8033
yarn.resourcemanager.webapp.address.rm2
${yarn.resourcemanager.hostname.rm2}:8088
yarn.resourcemanager.recovery.enabled
true
默认值为
false
,也就是说
resourcemanager
挂了相应的正在运行的任务在
rm
恢复后不能重新启动
yarn.resourcemanager.store.class
org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore
状态存储的类
yarn.resourcemanager.zk-address
node1:2181,node2:2181,node3:2181
yarn.nodemanager.resource.memory-mb
240000
该节点上
nodemanager
可使用的物理内存总量
yarn.nodemanager.resource.cpu-vcores
24
该节点上
nodemanager
可使用的虚拟
CPU
个数
yarn.scheduler.minimum-allocation-mb
1024
单个任务可申请的最小物理内存量
yarn.scheduler.maximum-allocation-mb
240000
单个任务可申请的最大物理内存量
yarn.scheduler.minimum-allocation-vcores
1
单个任务可申请的最小虚拟
CPU
个数
yarn.scheduler.maximum-allocation-vcores
24
单个任务可申请的最大虚拟
CPU
个数
yarn.nodemanager.vmem-pmem-ratio
4
任务每使用
1MB
物理内存,最多可使用虚拟内存量,默认是
2.1
。
22.
配置
mapred-site.xml
node1:~ #
cp /data/hadoop-2.7.3/
etc/hadoop/mapred-site.xml{.template
,}
node1:~ #
vim /data/hadoop-2.7.3/
etc/hadoop/mapred-site.xml
mapreduce.framework.name
yarn
23.
配置
hdfs-site.xml
node1:~ #
vim /data/hadoop-2.7.3/etc/hadoop/hdfs-site.xml
dfs.replication
2
保存副本数
dfs.nameservices
mycluster
dfs.ha.namenodes.mycluster
nn1,nn2
dfs.namenode.rpc-address.mycluster.nn1
node1:8020
dfs.namenode.rpc-address.mycluster.nn2
node2:8020
dfs.namenode.http-address.mycluster.nn1
node1:50070
dfs.namenode.http-address.mycluster.nn2
node2:50070
dfs.namenode.shared.edits.dir
qjournal://node1:8485;node2:8485;node3:8485/mycluster
dfs.client.failover.proxy.provider.mycluster
org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider
dfs.ha.fencing.methods
sshfence
dfs.ha.fencing.ssh.private-key-files
/root/.ssh/id_dsa
dfs.journalnode.edits.dir
/data/ hadoop-2.7.3/data/journal
dfs.permissions.superusergroup
root
超级用户组名
dfs.ha.automatic-failover.enabled
true
开启自动故障转移
新建相应目录
node1:~ # mkdir -pv
/data/ hadoop-2.7.3/data/{journal,tmp}
24.
配置
capacity-scheduler.xml
yarn.scheduler.capacity.maximum-applications
10000
Maximum number of applications that can be pending and running.
yarn.scheduler.capacity.maximum-am-resource-percent
0.1
Maximum percent of resources in the cluster which can be used to run
application masters i.e. controls number of concurrent running
applications.
yarn.scheduler.capacity.resource-calculator
org.apache.hadoop.yarn.util.resource.DominantResourceCalculator
The ResourceCalculator implementation to be used to compare
Resources in the scheduler.
The default i.e. DefaultResourceCalculator only uses Memory while
DominantResourceCalculator uses dominant-resource to compare
multi-dimensional resources such as Memory, CPU etc.
yarn.scheduler.capacity.root.queues
default
The queues at the this level (root is the root queue).
yarn.scheduler.capacity.root.default.capacity
100
Default queue target capacity.
yarn.scheduler.capacity.root.default.user-limit-factor
1
Default queue user limit a percentage from 0.0 to 1.0.
yarn.scheduler.capacity.root.default.maximum-capacity
100
The maximum capacity of the default queue.
yarn.scheduler.capacity.root.default.state
RUNNING
The state of the default queue. State can be one of RUNNING or STOPPED.
yarn.scheduler.capacity.root.default.acl_submit_applications
*
The ACL of who can submit jobs to the default queue.
yarn.scheduler.capacity.root.default.acl_administer_queue
*
The ACL of who can administer jobs on the default queue.
yarn.scheduler.capacity.node-locality-delay
40
Number of missed scheduling opportunities after which the CapacityScheduler
attempts to schedule rack-local containers.
Typically this should be set to number of nodes in the cluster, By default is setting
approximately number of nodes in one rack which is 40.
yarn.scheduler.capacity.queue-mappings
A list of mappings that will be used to assign jobs to queues
The syntax for this list is [u|g]:[name]:[queue_name][,next mapping]*
Typically this list will be used to map users to queues,
for example, u:%user:%user maps all users to queues with the same name
as the user.
false
If a queue mapping is present, will it override the value specified
by the user? This can be used by administrators to place jobs in queues
that are different than the one specified by the user.
The default is false.
25.
配置
slaves
node1:~ # vim /data/hadoop-2.7.3/etc/hadoop/
node1
node2
node3
node4
26.
修改
$HADOOP_HOME/sbin/hadoop-daemon.sh
node1: /data/hadoop-2.7.3 # cd /data/hadoop-2.7.3/sbin/
#
添加:
node1: /data/hadoop-2.7.3/sbin # HADOOP_PID_DIR=/data/hdfs/pids
27.
修改
$HADOOP_HOME/sbin/yarn-daemon.sh
#
添加:
node1: /data/hadoop-2.7.3/sbin # HADOOP_PID_DIR=/data/hdfs/pids
28.
分发
node1: /data/hadoop-2.7.3/etc/hadoop/ # scp -rp /data/hadoop-2.7.3
[email protected]:/data
node1: /data/hadoop-2.7.3/etc/hadoop/ # scp -rp /data/hadoop-2.7.3
[email protected]:/data
node1: /data/hadoop-2.7.3/etc/hadoop/ # scp -rp /data/hadoop-2.7.3
[email protected]:/data
五、
安装
hbase
29.
解压
hbase
node1:/data # cd /data/install
node1:/data/install # tar -zxvf hbase-1.2.5-bin.tar.gz -C /data
30.
修改
$HBASE_HOME/conf/hbase-env.sh,
添加
node1:/data # cd /data/hbase-1.2.5/conf
node1: /data/hbase-1.2.5 # vim hbase-env.sh
export HBASE_HOME=/data/hbase-1.2.5
export JAVA_HOME=/usr/jdk1.8.0_66
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HADOOP_HOME/lib/native/
export HBASE_LIBRARY_PATH=$HBASE_LIBRARY_PATH:$HBASE_HOME/lib/native/
#
设置到Hadoop
的etc/hadoop
目录是用来引导Hbase
找到Hadoop,
也就是说hbase
和hadoop
进行关联【必须设置,
否则hmaster
起不来】
export HBASE_CLASSPATH=$HADOOP_HOME/etc/hadoop
export HBASE_MANAGES_ZK=false #
不启用hbase
自带的zookeeper
export HBASE_PID_DIR=/data/hdfs/pids
export HBASE_SSH_OPTS="-o ConnectTimeout=1 -p 36928" #ssh
端口;
31.
修改
regionservers
文件
node1: /data/hbase-1.2.5 # vim regionservers
node1
node2
node3
node4
node1: /data/hbase-1.2.5 #
32.
修改
hbase-site.xml
文件
node1:/data/hbase-1.2.5/conf # vim hbase-site.xml
hbase.rootdir
hdfs://mycluster/hbase
hbase.zookeeper.quorum
node1,node2,node3
hbase.zookeeper.property.clientPort
2181
33.
分发
六、
安装
spark
34.
解压
spark
node1:/data #cd /data/install
node1:/data/install # tar -zxvf spark-2.0.2-bin-hadoop2.7.tgz -C /data
35.
修改文件名:
spark-2.0.2
node1:/data # mv spark-2.0.2-bin-hadoop2.7 spark-2.0.2
36.
配置
spark-env.sh
node1:/data #cd /data/spark-2.0.2/conf/
node1: /data/spark-2.0.2/conf/ #cp spark-env.sh.template spark-env.sh
node1: /data/spark-2.0.2/conf/ #vim spark-env.sh
#
添加:
export JAVA_HOME=/usr/jdk1.8.0_66
export SPARK_PID_DIR=/data/ spark-2.0.2/conf/pids
#
设置内存
export SPARK_WORKER_MEMORY=240g
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export LD_LIBRARY_PATH=$HADOOP_HOME/lib/native
export SPARK_MASTER_PORT=7077
export SPARK_WORKER_INSTANCES=1
export SPARK_HISTORY_OPTS="-Dspark.history.ui.port=18080 -Dspark.history.retainedApplications=3 -Dspark.history.fs.logDirectory=hdfs://mycluster/directory"
#
限制程序申请资源最大核数
export SPARK_MASTER_OPTS="-Dspark.deploy.defaultCores=12"
export SPARK_SSH_OPTS="-p 36928 -o StrictHostKeyChecking=no $SPARK_SSH_OPTS"
export SPARK_HISTORY_OPTS="-Dspark.history.ui.port=18080 -Dspark.history.retainedApplications=3 -Dspark.history.fs.logDirectory=hdfs://mycluster/directory"
#
内存小于32G
,配下面的
export SPARK_JAVA_OPTS="-XX:+UseCompressedOops -XX:+UseCompressedStrings $SPARK_JAVA_OPTS"
37.
配置
spark-defaults.conf
node1:/data #cd /data/spark-2.0.2/conf/
node1: /data/spark-2.0.2/conf/ #cp spark-defaults.conf.template spark-defaults.conf
node1: /data/spark-2.0.2/conf/ #vi spark-defaults.conf
#
添加
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.eventLog.enabled true
spark.eventLog.dir hdfs://mycluster/directory
spark.local.dir /data/spark-2.0.2/sparktmp
38.
配置
slaves
node1:/data #cd /data/spark-2.0.2/conf/
node1: /data/spark-2.0.2/conf/ #mv slaves.template slaves
node1: /data/spark-2.0.2/conf/ # vim slaves
node1
node2
node3
node4
node1: /data/spark-2.0.2/conf/ #
39.
分发
七、
启动过程
40.
同时开启所有
zookeeper
节点
node1:/data #cd /data/zookeeper-3.4.6/bin
node1: /data/zookeeper-3.4.6/bin #zkServer.sh start
node2: /data/zookeeper-3.4.6/bin #zkServer.sh start
node3: /data/zookeeper-3.4.6/bin #zkServer.sh start
41.
启动所有
journalnode
节点
node1:/data #cd /data/hadoop-2.7.3
node1:/data/hadoop-2.7.3 #sbin/hadoop-daemon.sh start journalnode
node2:/data/hadoop-2.7.3 #sbin/hadoop-daemon.sh start journalnode
node3:/data/hadoop-2.7.3 #sbin/hadoop-daemon.sh start journalnode
42.
格式化
namenode
目录
(
主节点
node1)
node1:/data #cd /data/hadoop-2.7.3
node1:/data/hadoop-2.7.3 #./bin/hdfs namenode -format
43.
启动当前格式化的
namenode
进程
(
主节点
node1)
node1:/data/hadoop-2.7.3 #./sbin/hadoop-daemon.sh start namenode
44.
在没有格式化的
NN
上
执行同步命令
(
副节点
node2)
node2:/data/hadoop-2.7.3 #./bin/hdfs namenode -bootstrapStandby
45.
启动
hdfs
node1:/data/hadoop-2.7.3 #./sbin/hadoop-daemon.sh start namenode
node1:/data/hadoop-2.7.3 #./sbin/start-dfs.sh
46.
启动
yarn
:
node1:~ # $HADOOP_HOME/sbin/
start-yarn.sh
47.
两台
resourcemanager
上启动
resourcemanager
node3:~ # $HADOOP_HOME/sbin/
yarn-daemon.sh start resourcemanager
node4:~ # $HADOOP_HOME/sbin/
yarn-daemon.sh start resourcemanager
HDFS
和
yarn
的
web
控制台默认监听端口分别为
50070
和
8088
。可以通过浏览放访问查看运行情况。
停止命令:
$HADOOP_HOME/sbin/stop-dfs.sh
$HADOOP_HOME/sbin/stop-yarn.sh
如果一切正常,使用
jps
可以查看到正在运行的
Hadoop
服务,在我机器上的显示结果为:
7312 Jps
1793 NameNode
2163 JournalNode
357 NodeManager
2696 QuorumPeerMain
14428 DFSZKFailoverController
1917 DataNode
48.
启动
hbase
node1:/data/hadoop-2.7.3 #cd /data/hbase-1.2.5/bin
node1:/data/hbase-1.2.5/bin #./start-hbase.sh
node1:/data/hbase-1.2.5/bin # jps
7312 Jps
8463 HMaster
1793 NameNode
2163 JournalNode
357 NodeManager
14632 HRegionServer
2696 QuorumPeerMain
14428 DFSZKFailoverController
1917 DataNode
Hbase web
页面
http://node1:16010
49.
启动
spark
node1: /data/hbase-1.2.5/bin #cd /data /spark-2.0.2/sbin
node1: /data /spark-2.0.2/sbin #./start-all.sh
node1: /data /spark-2.0.2/sbin #./start-history-server.sh
node1:/data/spark-2.0.2/sbin # jps
7312 Jps
8463 HMaster
1793 NameNode
2163 JournalNode
4901 Worker
357 NodeManager
14632 HRegionServer
2696 QuorumPeerMain
14428 DFSZKFailoverController
1917 DataNode
1722 Master
node1:/data/spark-2.0.2/sbin #
spark
的master web
页面访问
http://node1:8080
spark
的app
历史日志页面访问
http://node1:18080