基础概念
* AT24C02 2kb = 2048bit = 2048/8 B = 256 B
*存储空间256字节
* 32 pages of 8 bytes each
*32页,每页8个字节
* Device Address
* 1 0 1 0 A2 A1 A0 R/W
* 1 0 1 0 0 0 0 0 = 0XA0
* 1 0 1 0 0 0 0 1 = 0XA1
*R/W读写控制位
IIC 通信协议:
每一个 IIC 设备都有一个唯一的七位地址。 主机设备根据匹配地址选定唯一一个从机设备。
数据是以帧的形式传输的, 每一帧由 1 个字节组成(8 位)。 (注: 七位地址后还需带有一个读写控制位)
在 SCL 的上升沿, SDA 必须保持稳定, 并且 SDA 只能在 SCL 为低的期间改变。
除了数据帧, IIC 总线还有起始位、 停止位、 应答位。
启动: 在 SCL 为稳定的高电平期间, SDA 的一个下降沿启动传输
停止: 当 SCL 为稳定的高电平期间, SDA 的一个上升沿停止传输。
应答位是用来表示一个字节的成功传输。 对于总线的发送器(不论此发送器是主机还是从机), 在发送 8 个位的数据后, SDA需释放(由输出变为输入) 。 在第 9 个时钟脉冲期间, 接收机将 SDA拉低, 来应答接收到了 8 位数据。
/**
******************************************************************************
* @file bsp_i2c_ee.c
* @version V1.0
* @date 2013-xx-xx
* @brief i2c EEPROM(AT24C02)应用函数bsp
******************************************************************************
* @attention
*
* 实验平台:野火 F103-MINI STM32 开发板
* 论坛 :http://www.firebbs.cn
* 淘宝 :https://fire-stm32.taobao.com
*
******************************************************************************
*/
#include "bsp_i2c_ee.h"
#include "bsp_i2c_gpio.h"
#include "./usart/bsp_debug_usart.h"
/*
*********************************************************************************************************
* 函 数 名: i2c_CheckDevice
* 功能说明: 检测I2C总线设备,CPU向发送设备地址,然后读取设备应答来判断该设备是否存在
* 形 参:_Address:设备的I2C总线地址
* 返 回 值: 返回值 0 表示正确, 返回1表示未探测到
*********************************************************************************************************
*/
uint8_t ee_CheckDevice(uint8_t _Address)
{
uint8_t ucAck;
i2c_Start(); /* 发送启动信号 */
/* 发送设备地址+读写控制bit(0 = w, 1 = r) bit7 先传 */
i2c_SendByte(_Address | EEPROM_I2C_WR);
ucAck = i2c_WaitAck(); /* 检测设备的ACK应答 */
i2c_Stop(); /* 发送停止信号 */
i2c_NAck(); /*若输入的是读地址,需要产生非应答信号*/
return ucAck;
}
/*
*********************************************************************************************************
* 函 数 名: ee_WaitStandby
* 功能说明: 等待EEPROM到准备状态,在写入数据后,必须调用本函数
写入操作时,使用I2C把数据传输到EEPROM后,
EEPROM会向内部空间写入数据需要一定的时间,
当EEPROM内部写入完成后会对I2C的设备寻址有响应,
调用本函数可等待至EEPROM内部时序写入完毕
* 形 参:无
* 返 回 值: 0表示正常,1表示等待超时
*********************************************************************************************************
*/
uint8_t ee_WaitStandby(void)
{
uint32_t wait_count = 0;
while(ee_CheckDevice(EEPROM_DEV_ADDR))
{
//若检测超过次数,退出循环
if(wait_count++>0xFFFF)
{
//等待超时
return 1;
}
}
//等待完成
return 0;
}
/*
*********************************************************************************************************
* 函 数 名: ee_ReadBytes
* 功能说明: 从串行EEPROM指定地址处开始读取若干数据
* 形 参:_usAddress : 起始地址
* _usSize : 数据长度,单位为字节
* _pReadBuf : 存放读到的数据的缓冲区指针
* 返 回 值: 0 表示失败,1表示成功
*********************************************************************************************************
*/
uint8_t ee_ReadBytes(uint8_t *_pReadBuf, uint16_t _usAddress, uint16_t _usSize)
{
uint16_t i;
/* 采用串行EEPROM随即读取指令序列,连续读取若干字节 */
/* 第1步:发起I2C总线启动信号 */
i2c_Start();
/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
i2c_SendByte(EEPROM_DEV_ADDR | EEPROM_I2C_WR); /* 此处是写指令 */
/* 第3步:等待ACK */
if (i2c_WaitAck() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第4步:发送字节地址,24C02只有256字节,因此1个字节就够了,如果是24C04以上,那么此处需要连发多个地址 */
i2c_SendByte((uint8_t)_usAddress);
/* 第5步:等待ACK */
if (i2c_WaitAck() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第6步:重新启动I2C总线。前面的代码的目的向EEPROM传送地址,下面开始读取数据 */
i2c_Start();
/* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
i2c_SendByte(EEPROM_DEV_ADDR | EEPROM_I2C_RD); /* 此处是读指令 */
/* 第8步:发送ACK */
if (i2c_WaitAck() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
/* 第9步:循环读取数据 */
for (i = 0; i < _usSize; i++)
{
_pReadBuf[i] = i2c_ReadByte(); /* 读1个字节 */
/* 每读完1个字节后,需要发送Ack, 最后一个字节不需要Ack,发Nack */
if (i != _usSize - 1)
{
i2c_Ack(); /* 中间字节读完后,CPU产生ACK信号(驱动SDA = 0) */
}
else
{
i2c_NAck(); /* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
}
}
/* 发送I2C总线停止信号 */
i2c_Stop();
return 1; /* 执行成功 */
cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
/* 发送I2C总线停止信号 */
i2c_Stop();
return 0;
}
/*
*********************************************************************************************************
* 函 数 名: ee_WriteBytes
* 功能说明: 向串行EEPROM指定地址写入若干数据,采用页写操作提高写入效率
* 形 参:_usAddress : 起始地址
* _usSize : 数据长度,单位为字节
* _pWriteBuf : 存放读到的数据的缓冲区指针
* 返 回 值: 0 表示失败,1表示成功
*********************************************************************************************************
*/
uint8_t ee_WriteBytes(uint8_t *_pWriteBuf, uint16_t _usAddress, uint16_t _usSize)
{
uint16_t i,m;
uint16_t usAddr;
/*
写串行EEPROM不像读操作可以连续读取很多字节,每次写操作只能在同一个page。
对于24xx02,page size = 8
简单的处理方法为:按字节写操作模式,每写1个字节,都发送地址
为了提高连续写的效率: 本函数采用page wirte操作。
*/
usAddr = _usAddress;
for (i = 0; i < _usSize; i++)
{
/* 当发送第1个字节或是页面首地址时,需要重新发起启动信号和地址 */
if ((i == 0) || (usAddr & (EEPROM_PAGE_SIZE - 1)) == 0)
{
/* 第0步:发停止信号,启动内部写操作 */
i2c_Stop();
/* 通过检查器件应答的方式,判断内部写操作是否完成,一般小于 10ms
CLK频率为200KHz时,查询次数为30次左右
原理同 ee_WaitStandby 函数,但该函数检查完成后会产生停止信号,不适用于此处
*/
for (m = 0; m < 1000; m++)
{
/* 第1步:发起I2C总线启动信号 */
i2c_Start();
/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
i2c_SendByte(EEPROM_DEV_ADDR | EEPROM_I2C_WR); /* 此处是写指令 */
/* 第3步:发送一个时钟,判断器件是否正确应答 */
if (i2c_WaitAck() == 0)
{
break;
}
}
if (m == 1000)
{
goto cmd_fail; /* EEPROM器件写超时 */
}
/* 第4步:发送字节地址,24C02只有256字节,因此1个字节就够了,如果是24C04以上,那么此处需要连发多个地址 */
i2c_SendByte((uint8_t)usAddr);
/* 第5步:等待ACK */
if (i2c_WaitAck() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
}
/* 第6步:开始写入数据 */
i2c_SendByte(_pWriteBuf[i]);
/* 第7步:发送ACK */
if (i2c_WaitAck() != 0)
{
goto cmd_fail; /* EEPROM器件无应答 */
}
usAddr++; /* 地址增1 */
}
/* 命令执行成功,发送I2C总线停止信号 */
i2c_Stop();
//等待最后一次EEPROM内部写入完成
if(ee_WaitStandby() == 1) //等于1表示超时
goto cmd_fail;
return 1;
cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
/* 发送I2C总线停止信号 */
i2c_Stop();
return 0;
}
void ee_Erase(void)
{
uint16_t i;
uint8_t buf[EEPROM_SIZE];
/* 填充缓冲区 */
for (i = 0; i < EEPROM_SIZE; i++)
{
buf[i] = 0xFF;
}
/* 写EEPROM, 起始地址 = 0,数据长度为 256 */
if (ee_WriteBytes(buf, 0, EEPROM_SIZE) == 0)
{
printf("擦除eeprom出错!\r\n");
}
else
{
printf("擦除eeprom成功!\r\n");
}
}
/*
* eeprom AT24C02 读写测试
* 正常返回1,异常返回0
*/
uint8_t ee_Test(void)
{
uint16_t i;
uint8_t write_buf[EEPROM_SIZE];
uint8_t read_buf[EEPROM_SIZE];
/*-----------------------------------------------------------------------------------*/
if (ee_CheckDevice(EEPROM_DEV_ADDR) == 1)
{
/* 没有检测到EEPROM */
printf("没有检测到串行EEPROM!\r\n");
return 0;
}
/*------------------------------------------------------------------------------------*/
/* 填充测试缓冲区 */
for (i = 0; i < EEPROM_SIZE; i++)
{
write_buf[i] = i;
}
/*------------------------------------------------------------------------------------*/
if (ee_WriteBytes(write_buf, 0, EEPROM_SIZE) == 0)
{
printf("写eeprom出错!\r\n");
return 0;
}
else
{
printf("写eeprom成功!\r\n");
}
/*-----------------------------------------------------------------------------------*/
if (ee_ReadBytes(read_buf, 0, EEPROM_SIZE) == 0)
{
printf("读eeprom出错!\r\n");
return 0;
}
else
{
printf("读eeprom成功,数据如下:\r\n");
}
/*-----------------------------------------------------------------------------------*/
for (i = 0; i < EEPROM_SIZE; i++)
{
if(read_buf[i] != write_buf[i])
{
printf("0x%02X ", read_buf[i]);
printf("错误:EEPROM读出与写入的数据不一致");
return 0;
}
printf(" %02X", read_buf[i]);
if ((i & 15) == 15)
{
printf("\r\n");
}
}
printf("eeprom读写测试成功\r\n");
return 1;
}
/*********************************************END OF FILE**********************/
#ifndef __I2C_EE_H
#define __I2C_EE_H
#include "stm32f1xx.h"
#include "bsp_i2c_gpio.h"
/*
* AT24C02 2kb = 2048bit = 2048/8 B = 256 B
* 32 pages of 8 bytes each
*
* Device Address
* 1 0 1 0 A2 A1 A0 R/W
* 1 0 1 0 0 0 0 0 = 0XA0
* 1 0 1 0 0 0 0 1 = 0XA1
*/
/* AT24C01/02每页有8个字节
* AT24C04/08A/16A每页有16个字节
*/
#define EEPROM_DEV_ADDR 0xA0 /* 24xx02的设备地址 */
#define EEPROM_PAGE_SIZE 8 /* 24xx02的页面大小 */
#define EEPROM_SIZE 256 /* 24xx02总容量 */
uint8_t ee_ReadBytes(uint8_t *_pReadBuf, uint16_t _usAddress, uint16_t _usSize);
uint8_t ee_WriteBytes(uint8_t *_pWriteBuf, uint16_t _usAddress, uint16_t _usSize);
uint8_t ee_CheckDevice(uint8_t _Address);
void ee_Erase(void);
uint8_t ee_WaitStandby(void);
uint8_t ee_Test(void) ;
#endif /* __I2C_EE_H */