机器学习之决策树

本质上决策树是通过一系列规则对数据进行分类的过程。
决策树技术发现数据模式和规则的核心是归纳算法。
归纳是从特殊到一般的过程。

归纳推理从若干个事实中表征出的特征、特性和属性中,通过比较、总结、概括而得出一个规律性的结论。

归纳学习由于依赖于检验数据,因此又称为检验学习。

机器学习之决策树_第1张图片

ID3 算法的基本思想是,以信息熵为度量,用于决策树节点的属性选择,每次优先选取信息量最多的属性,亦即能使熵值变为最小的属性,以构造一颗熵值下降最快的决策树,到叶子节点处的熵值为 0 。此时,每个叶子节点对应的实例集中的实例属于同一类。
 
基尼指数
分类问题中,假设有 k 个类,样本点属于 k 的概率 Pk ,则概率分布的基尼指数:

机器学习之决策树_第2张图片

机器学习之决策树_第3张图片

机器学习之决策树_第4张图片 

机器学习之决策树_第5张图片 

python实现

计算香农熵

def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:    #the the number of unique elements and their occurance
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():          
           labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2) #log base 2
    return shannonEnt
划分数据集:参数包括数据集、特征、值
def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]     #chop out axis used for splitting
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

选择最好的数据集划分方式 

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):        #iterate over all the features
        featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
        uniqueVals = set(featList)       #get a set of unique values
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)     
       infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
       if (infoGain > bestInfoGain):       #compare this to the best gain so far
             bestInfoGain = infoGain         #if better than current best, set to best
             bestFeature = i
    return bestFeature 

多数表决的方法决定叶子节点的分类

def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

 创建树

def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList): 
        return classList[0]#stop splitting when all of the classes are equal
    if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
    return myTree 

使用决策树执行分类:

def classify(inputTree,featLabels,testVec):
    firstStr = inputTree.keys()[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)
    key = testVec[featIndex]
    valueOfFeat = secondDict[key]
    if isinstance(valueOfFeat, dict): 
        classLabel = classify(valueOfFeat, featLabels, testVec)
    else: classLabel = valueOfFeat
    return classLabel

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:((1)机器学习)