基于距离变换和分水岭算法的图像分割(图像变换 )

// 加载图像
Mat src = imread( "../data/cards.png");
// 成功加载
if (!src. data)
return -1;
// 显示图像
imshow( "Source Image", src);
基于距离变换和分水岭算法的图像分割(图像变换 )_第1张图片

如果我们用白色背景图像,转换它的黑色是好的。这将有助于我们desciminate(discriminate 区分)前景对象时更容易,运用距离变换。

//改变背景颜色白色到黑色。 距离变换更方便。
for( int x = 0; x < src.rows; x++ ) {
for( int y = 0; y < src. cols; y++ ) {
if ( src.at< Vec3b>(x, y) == Vec3b(255,255,255) ) {
src.at< Vec3b>(x, y)[0] = 0;
src.at< Vec3b>(x, y)[1] = 0;
src.at< Vec3b>(x, y)[2] = 0;
}
}
}
// 现实输出图像
imshow( "Black Background Image", src);
基于距离变换和分水岭算法的图像分割(图像变换 )_第2张图片

// Create a kernel that we will use for accuting/sharpening our image 滤波
Mat kernel = ( Mat_(3,3) <<
1, 1, 1,
1, -8, 1,
1, 1, 1); // an approximation of second derivative, a quite strong kernel 二阶导数 一个强的核
// do the laplacian filtering as it is
// well, we need to convert everything in something more deeper then CV_8U
// because the kernel has some negative values, 负值
// and we can expect in general to have a Laplacian image with negative values
// BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255
// so the possible negative number will be truncated
//因为内核有一些负值,我们一般可以得到一个负值的拉普拉斯图像。
//但8bits unsigned int(我们的工作)可以包含0到255的值,因此可能负值将被截断
Mat imgLaplacian;
Mat sharp = src; // copy source image to another temporary one
filter2D(sharp, imgLaplacian, CV_32F, kernel);
src. convertTo(sharp, CV_32F);
Mat imgResult = sharp - imgLaplacian;
// convert back to 8bits gray scale
imgResult. convertTo(imgResult, CV_8UC3);
imgLaplacian.convertTo(imgLaplacian, CV_8UC3);
// imshow( "Laplace Filtered Image", imgLaplacian );
imshow( "New Sharped Image", imgResult );
src = imgResult; // copy back
// Create binary image from source image
Mat bw;
cvtColor(src, bw, CV_BGR2GRAY);
threshold(bw, bw, 40, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
imshow( "Binary Image", bw);
// Perform the distance transform algorithm
//完成距离变换算法
Mat dist;
distanceTransform(bw, dist, CV_DIST_L2, 3);
// Normalize the distance image for range = {0.0, 1.0}
// so we can visualize and threshold it
normalize(dist, dist, 0, 1., NORM_MINMAX);
imshow( "Distance Transform Image", dist);
基于距离变换和分水岭算法的图像分割(图像变换 )_第3张图片


//Now we tranfrom our new sharped source image to a grayscale and a binary one, respectively:
//灰度图像和二值图像转化
// Threshold to obtain the peaks
// This will be the markers for the foreground objects
threshold(dist, dist, .4, 1., CV_THRESH_BINARY);
// Dilate a bit the dist image
Mat kernel1 = Mat::ones(3, 3, CV_8UC1);
dilate(dist, dist, kernel1);
imshow( "Peaks", dist);
// Create the CV_8U version of the distance image
// It is needed for findContours()
Mat dist_8u;
dist. convertTo(dist_8u, CV_8U);
// Find total markers
vector > contours;
findContours(dist_8u, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
// Create the marker image for the watershed algorithm
Mat markers = Mat::zeros(dist. size(), CV_32SC1);
// Draw the foreground markers
for ( size_t i = 0; i < contours.size(); i++)
drawContours(markers, contours, static_cast(i), Scalar::all(static_cast(i)+1), -1);
// Draw the background marker
circle(markers, Point(5,5), 3, CV_RGB(255,255,255), -1);
imshow( "Markers", markers*10000);
// Perform the watershed algorithm
watershed(src, markers);
Mat mark = Mat::zeros(markers. size(), CV_8UC1);
markers. convertTo(mark, CV_8UC1);
bitwise_not(mark, mark);
// imshow("Markers_v2", mark); // uncomment this if you want to see how the mark
// image looks like at that point
// Generate random colors
vector colors;
for ( size_t i = 0; i < contours.size(); i++)
{
int b = theRNG(). uniform(0, 255);
int g = theRNG(). uniform(0, 255);
int r = theRNG(). uniform(0, 255);
colors.push_back( Vec3b(( uchar)b, ( uchar)g, ( uchar)r));
}
// Create the result image
Mat dst = Mat::zeros(markers. size(), CV_8UC3);
// Fill labeled objects with random colors
for ( int i = 0; i < markers. rows; i++)
{
for ( int j = 0; j < markers. cols; j++)
{
int index = markers. at< int>(i,j);
if (index > 0 && index <= static_cast(contours.size()))
dst. at< Vec3b>(i,j) = colors[index-1];
else
dst. at< Vec3b>(i,j) = Vec3b(0,0,0);
}
}
// Visualize the final image
imshow( "Final Result", dst);
waitKey(0);
return 0;
}

你可能感兴趣的:(opencv,图像处理学习笔记)