windows10+keras下的yolov3的快速使用及自己数据集的训练

引用:https://blog.csdn.net/weixin_42769131/article/details/88849903
该版本yolov3使用者较多,但是文章里有重要步骤遗漏,在这里补充之。

一、环境要求
tensorflow-gpu
keras
pycharm

二、快速使用

1、下载yolov3代码:https://github.com/qqwweee/keras-yolo3 ,并解压缩之后用pycharm打开。
2、下载权重:https://pjreddie.com/media/files/yolov3.weights并将权重放在keras-yolo3的文件夹下。如下图所示:
windows10+keras下的yolov3的快速使用及自己数据集的训练_第1张图片
3、执行如下命令将darknet下的yolov3配置文件转换成keras适用的h5文件。

python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5

4、运行预测图像程序

python yolo_video.py --image
windows10+keras下的yolov3的快速使用及自己数据集的训练_第2张图片
输入需要预测的图片路径即可,结果示例如下:
windows10+keras下的yolov3的快速使用及自己数据集的训练_第3张图片
这样就可以实现yolov3的快速使用了。

三、训练自己的数据集进行目标检测

1、在工程下新建一个文件夹VOCdevkit,目录结构为VOCdevkit/VOC2007/,在下面就是新建几个默认名字的文件夹 Annotations,ImageSets(该目录还有三个文件需要建立),JPEGImages(把你所有的图片都复制到该目录里面,如下图),SegmentationClass,SegmentationObject。
windows10+keras下的yolov3的快速使用及自己数据集的训练_第4张图片
2、生成Annotation下的文件,安装工具labelImg。安装过程可参照:

https://blog.csdn.net/u012746060/article/details/81016993,结果如下图:
windows10+keras下的yolov3的快速使用及自己数据集的训练_第5张图片
3、生成ImageSet/Main/4个文件。在VOC2007下新建一个python文件,复制如下代码

import os
import random
 
trainval_percent = 0.2
train_percent = 0.8
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets\Main'
total_xml = os.listdir(xmlfilepath)
 
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
 
ftrainval = open('ImageSets/Main/trainval.txt', 'w')
ftest = open('ImageSets/Main/test.txt', 'w')
ftrain = open('ImageSets/Main/train.txt', 'w')
fval = open('ImageSets/Main/val.txt', 'w')
 
for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftest.write(name)
        else:
            fval.write(name)
    else:
        ftrain.write(name)
 
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

运行代码之后,生成如下文件,VOC2007数据集制作完成。
windows10+keras下的yolov3的快速使用及自己数据集的训练_第6张图片
4.生成的数据集不能供yolov3直接使用。需要运行voc_annotation.py ,classes以检测两个类为例(车和人腿),在voc_annotation.py需改你的数据集为:
在这里插入图片描述
运行之后,生成如下三个文件:
windows10+keras下的yolov3的快速使用及自己数据集的训练_第7张图片
5、修改model_data下的voc_classes.txt为自己训练的类别
windows10+keras下的yolov3的快速使用及自己数据集的训练_第8张图片
6、运行kmeans.py,更新model_data下yolo_anchors.txt
注意:原博文中的yolov3.cfg可改可不改,如果不用别人训练好的权重(比如之前生成的yolo_weights.h5,是对coco数据集的80类预训练得到的)预训练,直接无视.cfg文件。如果使用再修改。具体怎么预训练?修改下面train.py文件里的

  def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,
                               weights_path='……'):

将false改为True,并加入权重路径

7、 修改train.py代码(用下面代码直接替换原来的代码)

"""
Retrain the YOLO model for your own dataset.
"""
import numpy as np
import keras.backend as K
from keras.layers import Input, Lambda
from keras.models import Model
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping
 
from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss
from yolo3.utils import get_random_data
 
 
def _main():
    annotation_path = '2007_train.txt'
    log_dir = 'logs/000/'
    classes_path = 'model_data/voc_classes.txt'
    anchors_path = 'model_data/yolo_anchors.txt'
    class_names = get_classes(classes_path)
    anchors = get_anchors(anchors_path)
    input_shape = (416,416) # multiple of 32, hw
    model = create_model(input_shape, anchors, len(class_names) )
    train(model, annotation_path, input_shape, anchors, len(class_names), log_dir=log_dir)
 
def train(model, annotation_path, input_shape, anchors, num_classes, log_dir='logs/'):
    model.compile(optimizer='adam', loss={
        'yolo_loss': lambda y_true, y_pred: y_pred})
    logging = TensorBoard(log_dir=log_dir)
    checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5",
        monitor='val_loss', save_weights_only=True, save_best_only=True, period=1)
    batch_size = 10
    val_split = 0.1
    with open(annotation_path) as f:
        lines = f.readlines()
    np.random.shuffle(lines)
    num_val = int(len(lines)*val_split)
    num_train = len(lines) - num_val
    print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
 
    model.fit_generator(data_generator_wrap(lines[:num_train], batch_size, input_shape, anchors, num_classes),
            steps_per_epoch=max(1, num_train//batch_size),
            validation_data=data_generator_wrap(lines[num_train:], batch_size, input_shape, anchors, num_classes),
            validation_steps=max(1, num_val//batch_size),
            epochs=500,
            initial_epoch=0)
    model.save_weights(log_dir + 'trained_weights.h5')
 
def get_classes(classes_path):
    with open(classes_path) as f:
        class_names = f.readlines()
    class_names = [c.strip() for c in class_names]
    return class_names
 
def get_anchors(anchors_path):
    with open(anchors_path) as f:
        anchors = f.readline()
    anchors = [float(x) for x in anchors.split(',')]
    return np.array(anchors).reshape(-1, 2)
 
def create_model(input_shape, anchors, num_classes, load_pretrained=False, freeze_body=False,
            weights_path='model_data/yolo_weights.h5'):
    K.clear_session() # get a new session
    image_input = Input(shape=(None, None, 3))
    h, w = input_shape
    num_anchors = len(anchors)
    y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
        num_anchors//3, num_classes+5)) for l in range(3)]
 
    model_body = yolo_body(image_input, num_anchors//3, num_classes)
    print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
 
    if load_pretrained:
        model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
        print('Load weights {}.'.format(weights_path))
        if freeze_body:
            # Do not freeze 3 output layers.
            num = len(model_body.layers)-7
            for i in range(num): model_body.layers[i].trainable = False
            print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))
 
    model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
        arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
        [*model_body.output, *y_true])
    model = Model([model_body.input, *y_true], model_loss)
    return model
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes):
    n = len(annotation_lines)
    np.random.shuffle(annotation_lines)
    i = 0
    while True:
        image_data = []
        box_data = []
        for b in range(batch_size):
            i %= n
            image, box = get_random_data(annotation_lines[i], input_shape, random=True)
            image_data.append(image)
            box_data.append(box)
            i += 1
        image_data = np.array(image_data)
        box_data = np.array(box_data)
        y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
        yield [image_data, *y_true], np.zeros(batch_size)
 
def data_generator_wrap(annotation_lines, batch_size, input_shape, anchors, num_classes):
    n = len(annotation_lines)
    if n==0 or batch_size<=0: return None
    return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)
 
if __name__ == '__main__':
    _main()

替换完成后,千万千万值得注意的是,因为程序中有logs/000/目录,你需要创建这样一个目录,这个目录的作用就是存放自己的数据集训练得到的模型。不然程序运行到最后会因为找不到该路径而发生错误。生成的模型trained_weights.h5如下:
在这里插入图片描述
8、修改yolo.py文件,如下将self这三行修改为各自对应的路径
windows10+keras下的yolov3的快速使用及自己数据集的训练_第9张图片
而后运行train.py就能开始训练了。

四、目标检测
windows10+keras下的yolov3的快速使用及自己数据集的训练_第10张图片

你可能感兴趣的:(深度学习,tensorflow)