Scrapy简介
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
Scrapy主要包括了以下组件:
- 引擎(Scrapy): 用来处理整个系统的数据流处理, 触发事务(框架核心)
- 调度器(Scheduler): 用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
- 下载器(Downloader): 用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
- 爬虫(Spiders): 爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
- 项目管道(Pipeline): 负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
- 下载器中间件(Downloader Middlewares): 位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
- 爬虫中间件(Spider Middlewares): 介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
- 调度中间件(Scheduler Middewares): 介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
Scrapy运行流程大概如下:
- 首先,引擎从调度器中取出一个链接(URL)用于接下来的抓取
- 引擎把URL封装成一个请求(Request)传给下载器,下载器把资源下载下来,并封装成应答包(Response)
- 然后,爬虫解析Response
- 若是解析出实体(Item),则交给实体管道进行进一步的处理。
- 若是解析出的是链接(URL),则把URL交给Scheduler等待抓取
1 from scrapy.spider import Spider 2 from scrapy.selector import Selector 3 from tutorial.items import DmozItem 4 5 6 class DmozSpider(Spider): 7 name = "dmoz" 8 allowed_domains = ["dmoz.org"] 9 start_urls = [ 10 "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/", 11 "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/", 12 ] 13 14 def parse(self, response): 15 sel = Selector(response) 16 sites = sel.xpath('//ul[@class="directory-url"]/li') 17 items = [] 18 19 for site in sites: 20 item = DmozItem() 21 item['name'] = site.xpath('a/text()').extract() 22 item['url'] = site.xpath('a/@href').extract() 23 item['description'] = site.xpath('text()').re('-\s[^\n]*\\r') 24 items.append(item) 25 return items
为JSON文件编写一个items
from scrapy.exceptions import DropItem class TutorialPipeline(object): # put all words in lowercase words_to_filter = ['politics', 'religion'] def process_item(self, item, spider): for word in self.words_to_filter: if word in unicode(item['description']).lower(): raise DropItem("Contains forbidden word: %s" % word) else: return item
Spider主程序
#!/usr/bin/env python # -*- coding:utf-8 -*- """ 一个简单的Python 爬虫, 用于抓取豆瓣电影Top前250的电影的名称描述等 """ from scrapy.contrib.spiders import CrawlSpider, Rule from scrapy.selector import Selector from douban.items import DoubanItem from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor class DoubanSpider(CrawlSpider) : name = "douban" allowed_domains = ["movie.douban.com"] start_urls = ["http://movie.douban.com/top250"] rules = ( #将所有符合正则表达式的url加入到抓取列表中 Rule(SgmlLinkExtractor(allow = (r'http://movie\.douban\.com/top250\?start=\d+&filter=&type=',))), #将所有符合正则表达式的url请求后下载网页代码, 形成response后调用自定义回调函数 Rule(SgmlLinkExtractor(allow = (r'http://movie\.douban\.com/subject/\d+', )), callback = 'parse_page', follow = True), ) def parse_page(self, response) : sel = Selector(response) item = DoubanItem() item['name'] = sel.xpath('//h1/span[@property="v:itemreviewed"]/text()').extract() item['description'] = sel.xpath('//div/span[@property="v:summary"]/text()').extract() item['url'] = response.url return item
还需要解决的问题
- 头部伪装
- 表单提交
- 编码转换