接下来,我们要做一个比较有挑战性的工作,那么就是使用pytorch实现强化学习网络,即DQN.目前,已经有tensorflow的实现
,所以,涉及到游戏的python代码,非我原创。
关于DQN,算法伪代码:
关于游戏的介绍,我这里就还不多说了
https://blog.csdn.net/songrotek/article/details/50951537
github上有人放出使用DQN玩Flappy Bird的代码,https://github.com/yenchenlin1994/DeepLearningFlappyBird【1】
这个在tensorflow下的实现,这里,我主要是对其深度网络模块的设计,采用了pytorch重新设计了一遍。其余模块不变
,所以变量名基本不变。
深度学习网络设计:
所以,我们关于该网络模块的设计代码实现为:
class DeepNetWork(nn.Module): def __init__(self): super(DeepNetWork, self).__init__() # 需要将事先训练好的词向量载入 self.conv1 = nn.Sequential( nn.Conv2d(in_channels=4, out_channels=32, kernel_size=8,stride=4,padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2) # ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2,padding=1), nn.ReLU(inplace=True), ) self.conv3 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), ) self.fc1=nn.Sequential( nn.Linear(1600,256), nn.ReLU(), ) self.out = nn.Linear(256,2) def forward(self,x): #btach channel width,weight x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = x.view(x.size(0), -1) # 将(batch,outchanel,w,h)展平为(batch,outchanel*w*h) x = self.fc1(x) output = self.out(x) return outputtrain模块
def train(self): # Step 1: obtain random minibatch from replay memory minibatch = random.sample(self.replayMemory, BATCH_SIZE) state_batch = [data[0] for data in minibatch] action_batch = [data[1] for data in minibatch] reward_batch = [data[2] for data in minibatch] nextState_batch = [data[3] for data in minibatch] # Step 2: calculate y y_batch = np.zeros([BATCH_SIZE,1]) nextState_batch=np.array(nextState_batch) #print("train next state shape") #print(nextState_batch.shape) nextState_batch=torch.Tensor(nextState_batch) action_batch=np.array(action_batch) index=action_batch.argmax(axis=1) print("action "+str(index)) index=np.reshape(index,[BATCH_SIZE,1]) action_batch_tensor=torch.LongTensor(index) QValue_batch = self.Q_netT(nextState_batch) QValue_batch=QValue_batch.detach().numpy() for i in range(0, BATCH_SIZE): terminal = minibatch[i][4] if terminal: y_batch[i][0]=reward_batch[i] else: # 这里的QValue_batch[i]为数组,大小为所有动作集合大小,QValue_batch[i],代表 # 做所有动作的Q值数组,y计算为如果游戏停止,y=rewaerd[i],如果没停止,则y=reward[i]+gamma*np.max(Qvalue[i]) # 代表当前y值为当前reward+未来预期最大值*gamma(gamma:经验系数) y_batch[i][0]=reward_batch[i] + GAMMA * np.max(QValue_batch[i]) y_batch=np.array(y_batch) y_batch=np.reshape(y_batch,[BATCH_SIZE,1]) state_batch_tensor=Variable(torch.Tensor(state_batch)) y_batch_tensor=Variable(torch.Tensor(y_batch)) y_predict=self.Q_net(state_batch_tensor).gather(1,action_batch_tensor) loss=self.loss_func(y_predict,y_batch_tensor) print("loss is "+str(loss)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() if self.timeStep % UPDATE_TIME == 0: self.Q_netT.load_state_dict(self.Q_net.state_dict()) self.save()
这里,Q值网络针对每个输入的状态输出的为一个大小为action的数组。所以,代表输入状态执行不同动作的的Q值。所以在计算损失时,要根据训练时动作和深度网络计算出Q值数组计算出神经网络关于某种状态下做出某种动作的Q值,与训练集中的Q值做损失计算。
最后,每次我们选择动作时,选择使得Q值最大的动作,这是强化学习的知识,这里就不用仔细讨论了。
我这里贴出这部分代码:
这是flappy_bird.py,代表主函数执行:
import sys import cv2 sys.path.append("game/") import wrapped_flappy_bird as game import BrainDQN import numpy as np # preprocess raw image to 80*80 gray image def preprocess(observation): observation = cv2.cvtColor(cv2.resize(observation, (80, 80)), cv2.COLOR_BGR2GRAY) ret, observation = cv2.threshold(observation,1,255,cv2.THRESH_BINARY) return np.reshape(observation,(1,80,80)) def playFlappyBird(): # Step 1: init BrainDQN actions = 2 brain = BrainDQN.BrainDQNMain(actions) # Step 2: init Flappy Bird Game flappyBird = game.GameState() # Step 3: play game # Step 3.1: obtain init state action0 = np.array([1,0]) # do nothing observation0, reward0, terminal = flappyBird.frame_step(action0) observation0 = cv2.cvtColor(cv2.resize(observation0, (80, 80)), cv2.COLOR_BGR2GRAY) ret, observation0 = cv2.threshold(observation0,1,255,cv2.THRESH_BINARY) brain.setInitState(observation0) print(brain.currentState.shape) # Step 3.2: run the game while 1!= 0: action = brain.getAction() nextObservation,reward,terminal = flappyBird.frame_step(action) nextObservation = preprocess(nextObservation) #print(nextObservation.shape) brain.setPerception(nextObservation,action,reward,terminal) def main(): playFlappyBird() if __name__ == '__main__': main()
然后,关于深度网络调用和学习的代码:
from collections import deque import torch import numpy as np from torch.autograd import Variable import torch.nn as nn # Hyper Parameters: FRAME_PER_ACTION = 1 GAMMA = 0.99 # decay rate of past observations OBSERVE = 1000. # timesteps to observe before training EXPLORE = 200000. # frames over which to anneal epsilon FINAL_EPSILON = 0#0.001 # final value of epsilon INITIAL_EPSILON = 0#0.01 # starting value of epsilon REPLAY_MEMORY = 50000 # number of previous transitions to remember BATCH_SIZE = 32 # size of minibatch UPDATE_TIME = 100 width=80 height=80; import random class DeepNetWork(nn.Module): def __init__(self): super(DeepNetWork, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels=4, out_channels=32, kernel_size=8,stride=4,padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2) # ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2,padding=1), nn.ReLU(inplace=True), ) self.conv3 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), ) self.fc1=nn.Sequential( nn.Linear(1600,256), nn.ReLU(), ) self.out = nn.Linear(256,2) def forward(self,x): #btach channel width,weight x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = x.view(x.size(0), -1) # 将(batch,outchanel,w,h)展平为(batch,outchanel*w*h) x = self.fc1(x) output = self.out(x) return output import os class BrainDQNMain: def save(self): print("save model param") torch.save(self.Q_net.state_dict(), 'params3.pth') def load(self): if os.path.exists("params3.pth"): print("load model param") self.Q_net.load_state_dict(torch.load('params3.pth')) self.Q_netT.load_state_dict(torch.load('params3.pth')) def __init__(self,actions): self.replayMemory = deque() # init some parameters self.timeStep = 0 self.epsilon = INITIAL_EPSILON self.actions = actions self.Q_net=DeepNetWork() self.Q_netT=DeepNetWork(); self.load() self.loss_func=nn.MSELoss() LR=1e-6 self.optimizer = torch.optim.Adam(self.Q_net.parameters(), lr=LR) def train(self): # Step 1: obtain random minibatch from replay memory minibatch = random.sample(self.replayMemory, BATCH_SIZE) state_batch = [data[0] for data in minibatch] action_batch = [data[1] for data in minibatch] reward_batch = [data[2] for data in minibatch] nextState_batch = [data[3] for data in minibatch] # Step 2: calculate y y_batch = np.zeros([BATCH_SIZE,1]) nextState_batch=np.array(nextState_batch) #print("train next state shape") #print(nextState_batch.shape) nextState_batch=torch.Tensor(nextState_batch) action_batch=np.array(action_batch) index=action_batch.argmax(axis=1) print("action "+str(index)) index=np.reshape(index,[BATCH_SIZE,1]) action_batch_tensor=torch.LongTensor(index) QValue_batch = self.Q_netT(nextState_batch) QValue_batch=QValue_batch.detach().numpy() for i in range(0, BATCH_SIZE): terminal = minibatch[i][4] if terminal: y_batch[i][0]=reward_batch[i] else: # 这里的QValue_batch[i]为数组,大小为所有动作集合大小,QValue_batch[i],代表 # 做所有动作的Q值数组,y计算为如果游戏停止,y=rewaerd[i],如果没停止,则y=reward[i]+gamma*np.max(Qvalue[i]) # 代表当前y值为当前reward+未来预期最大值*gamma(gamma:经验系数) y_batch[i][0]=reward_batch[i] + GAMMA * np.max(QValue_batch[i]) y_batch=np.array(y_batch) y_batch=np.reshape(y_batch,[BATCH_SIZE,1]) state_batch_tensor=Variable(torch.Tensor(state_batch)) y_batch_tensor=Variable(torch.Tensor(y_batch)) y_predict=self.Q_net(state_batch_tensor).gather(1,action_batch_tensor) loss=self.loss_func(y_predict,y_batch_tensor) print("loss is "+str(loss)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() if self.timeStep % UPDATE_TIME == 0: self.Q_netT.load_state_dict(self.Q_net.state_dict()) self.save() def setPerception(self,nextObservation,action,reward,terminal): #print(nextObservation.shape) newState = np.append(self.currentState[1:,:,:],nextObservation,axis = 0) # newState = np.append(nextObservation,self.currentState[:,:,1:],axis = 2) self.replayMemory.append((self.currentState,action,reward,newState,terminal)) if len(self.replayMemory) > REPLAY_MEMORY: self.replayMemory.popleft() if self.timeStep > OBSERVE: # Train the network self.train() # print info state = "" if self.timeStep <= OBSERVE: state = "observe" elif self.timeStep > OBSERVE and self.timeStep <= OBSERVE + EXPLORE: state = "explore" else: state = "train" print ("TIMESTEP", self.timeStep, "/ STATE", state, \ "/ EPSILON", self.epsilon) self.currentState = newState self.timeStep += 1 def getAction(self): currentState=torch.Tensor([self.currentState]) QValue = self.Q_net(currentState)[0] action = np.zeros(self.actions) if self.timeStep % FRAME_PER_ACTION == 0: if random.random() <= self.epsilon: action_index = random.randrange(self.actions) print("choose random action "+str(action_index)) action[action_index] = 1 else: action_index = np.argmax(QValue.detach().numpy()) print("choose qnet value action " + str(action_index)) action[action_index] = 1 else: action[0] = 1 # do nothing # change episilon if self.epsilon > FINAL_EPSILON and self.timeStep > OBSERVE: self.epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / EXPLORE return action def setInitState(self, observation): self.currentState = np.stack((observation, observation, observation, observation), axis=0) print(self.currentState.shape)此代码是 https://github.com/yenchenlin1994/DeepLearningFlappyBird 的pytorch实现版本。所以关于其他细节设计,我尽量靠近原版,包括变量名。