电商平台中的用户行为频繁且较复杂,系统上线运行一段时间后,可以收集到大量的用户行为数据,进而利用大数据技术进行深入挖掘和分析,得到感兴趣的商业指标并增强对风险的控制。
电商用户行为数据多样,整体可以分为用户行为习惯数据和业务行为数据两大类。用户的行为习惯数据包括了用户的登录方式、上线的时间点及时长、点击和浏览页面、页面停留时间以及页面跳转等等,我们可以从中进行流量统计和热门商品的统计,也可以深入挖掘用户的特征;这些数据往往可以从web服务器日志中直接读取到。而业务行为数据就是用户在电商平台中针对每个业务(通常是某个具体商品)所作的操作,我们一般会在业务系统中相应的位置埋点,然后收集日志进行分析。业务行为数据又可以简单分为两类:一类是能够明显地表现出用户兴趣的行为,比如对商品的收藏、喜欢、评分和评价,我们可以从中对数据进行深入分析,得到用户画像,进而对用户给出个性化的推荐商品列表,这个过程往往会用到机器学习相关的算法;另一类则是常规的业务操作,但需要着重关注一些异常状况以做好风控,比如登录和订单支付。
基于对电商用户行为数据的基本分类,我们可以发现主要有以下三个分析方向:
1.热门统计
利用用户的点击浏览行为,进行流量统计、近期热门商品统计等。
2.偏好统计
利用用户的偏好行为,比如收藏、喜欢、评分等,进行用户画像分析,给出个性化的商品推荐列表。
3.风险控制
利用用户的常规业务行为,比如登录、下单、支付等,分析数据,对异常情况进行报警提示。
本项目限于数据,我们只实现热门统计和风险控制中的部分内容,将包括以下四大模块:实时热门商品统计、实时流量统计、恶意登录监控和订单支付失效监控。
由于对实时性要求较高,我们会用flink作为数据处理的框架。在项目中,我们将综合运用flink的各种API,基于EventTime去处理基本的业务需求,并且灵活地使用底层的processFunction,基于状态编程和CEP去处理更加复杂的情形。
我们准备了一份淘宝用户行为数据集,保存为csv文件。本数据集包含了淘宝上某一天随机一百万用户的所有行为(包括点击、购买、收藏、喜欢)。数据集的每一行表示一条用户行为,由用户ID、商品ID、商品类目ID、行为类型和时间戳组成,并以逗号分隔。关于数据集中每一列的详细描述如下:
字段名 | 数据类型 | 说明 |
userId | Long | 加密后的用户ID |
itemId | Long | 加密后的商品ID |
categoryId | Int | 加密后的商品所属类别ID |
behavior | String | 用户行为类型,包括(‘pv’, ‘’buy, ‘cart’, ‘fav’) |
timestamp | Long | 行为发生的时间戳,单位秒 |
另外,我们还可以拿到web服务器的日志数据,这里以apache服务器的一份log为例,每一行日志记录了访问者的IP、userId、访问时间、访问方法以及访问的url,具体描述如下:
字段名 | 数据类型 | 说明 |
ip | String | 访问的 IP |
userId | Long | 访问的 user ID |
eventTime | Long | 访问时间 |
method | String | 访问方法 GET/POST/PUT/DELETE |
url | String | 访问的 url |
由于行为数据有限,在实时热门商品统计模块中可以使用UserBehavior数据集,而对于恶意登录监控和订单支付失效监控,我们只以示例数据来做演示。
首先要实现的是实时热门商品统计,我们将会基于UserBehavior数据集来进行分析。
项目主体用Scala编写,采用IDEA作为开发环境进行项目编写,采用maven作为项目构建和管理工具。首先我们需要搭建项目框架。
打开IDEA,创建一个maven项目,命名为UserBehaviorAnalysis。由于包含了多个模块,我们可以以UserBehaviorAnalysis作为父项目,并在其下建一个名为HotItemsAnalysis的子项目,用于实时统计热门top N商品。
在UserBehaviorAnalysis下新建一个 maven module作为子项目,命名为HotItemsAnalysis。
父项目只是为了规范化项目结构,方便依赖管理,本身是不需要代码实现的,所以UserBehaviorAnalysis下的src文件夹可以删掉。
我们整个项目需要的工具的不同版本可能会对程序运行造成影响,所以应该在最外层的UserBehaviorAnalysis中声明所有子模块共用的版本信息。
在pom.xml中加入以下配置:
① UserBehaviorAnalysis/pom.xml
<properties>
<flink.version>1.7.2</flink.version>
<scala.binary.version>2.11</scala.binary.version>
<kafka.version>2.2.0</kafka.version>
</properties>
对于整个项目而言,所有模块都会用到flink相关的组件,所以我们在UserBehaviorAnalysis中引入公有依赖:
① UserBehaviorAnalysis/pom.xml
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_${scala.binary.version}</artifactId>
<version>${kafka.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
</dependencies>
同样,对于maven项目的构建,可以引入公有的插件:
<build>
<plugins>
<!-- 该插件用于将Scala代码编译成class文件 -->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.4.6</version>
<executions>
<execution>
<!-- 声明绑定到maven的compile阶段 -->
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>
jar-with-dependencies
</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
在HotItemsAnalysis子模块中,我们并没有引入更多的依赖,所以不需要改动pom文件。
在src/main/目录下,可以看到已有的默认源文件目录是java,我们可以将其改名为scala。将数据文件UserBehavior.csv复制到资源文件目录src/main/resources下,我们将从这里读取数据。
至此,我们的准备工作都已完成,接下来可以写代码了。
我们将实现一个“实时热门商品”的需求,可以将“实时热门商品”翻译成程序员更好理解的需求:
每隔5分钟输出最近一小时内点击量最多的前N个商品。
将这个需求进行分解我们大概要做这么几件事情:
在src/main/scala下创建HotItems.scala文件,新建一个单例对象。定义样例类UserBehavior和ItemViewCount,在main函数中创建StreamExecutionEnvironment 并做配置,然后从UserBehavior.csv文件中读取数据,并包装成UserBehavior类型。代码如下:
② HotItemsAnalysis/src/main/scala/HotItems.scala
case class UserBehavior(userId: Long, itemId: Long, categoryId: Int, behavior: String, timestamp: Long)
case class ItemViewCount(itemId: Long, windowEnd: Long, count: Long)
object HotItems {
def main(args: Array[String]): Unit = {
// 创建一个 StreamExecutionEnvironment
val env = StreamExecutionEnvironment.getExecutionEnvironment
// 设定Time类型为EventTime
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
// 为了打印到控制台的结果不乱序,我们配置全局的并发为1,这里改变并发对结果正确性没有影响
env.setParallelism(1)
val stream = env
// 以window下为例,需替换成自己的路径
.readTextFile("YOUR_PATH\\resources\\UserBehavior.csv")
.map(line => {
val linearray = line.split(",")
UserBehavior(linearray(0).toLong, linearray(1).toLong, linearray(2).toInt, linearray(3), linearray(4).toLong)
})
// 指定时间戳和watermark
.assignAscendingTimestamps(_.timestamp * 1000)
env.execute("Hot Items Job")
}
这里注意,我们需要统计业务时间上的每小时的点击量,所以要基于EventTime来处理。那么如果让Flink按照我们想要的业务时间来处理呢?这里主要有两件事情要做。
第一件是告诉Flink我们现在按照EventTime模式进行处理,Flink默认使用ProcessingTime处理,所以我们要显式设置如下:
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
第二件事情是指定如何获得业务时间,以及生成Watermark。Watermark是用来追踪业务事件的概念,可以理解成EventTime世界中的时钟,用来指示当前处理到什么时刻的数据了。由于我们的数据源的数据已经经过整理,没有乱序,即事件的时间戳是单调递增的,所以可以将每条数据的业务时间就当做Watermark。这里我们用 assignAscendingTimestamps来实现时间戳的抽取和Watermark的生成。
注:真实业务场景一般都是乱序的,所以一般不用assignAscendingTimestamps,而是使用
BoundedOutOfOrdernessTimestampExtractor。
.assignAscendingTimestamps(_.timestamp * 1000)
这样我们就得到了一个带有时间标记的数据流了,后面就能做一些窗口的操作。
在开始窗口操作之前,先回顾下需求“每隔5分钟输出过去一小时内点击量最多的前N个商品”。由于原始数据中存在点击、购买、收藏、喜欢各种行为的数据,但是我们只需要统计点击量,所以先使用filter将点击行为数据过滤出来。
.filter(_.behavior == "pv")
由于要每隔5分钟统计一次最近一小时每个商品的点击量,所以窗口大小是一小时,每隔5分钟滑动一次。即分别要统计[09:00, 10:00), [09:05, 10:05), [09:10, 10:10)…等窗口的商品点击量。是一个常见的滑动窗口需求(Sliding Window)。
.keyBy("itemId")
.timeWindow(Time.minutes(60), Time.minutes(5))
.aggregate(new CountAgg(), new WindowResultFunction());
我们使用.keyBy(“itemId”)对商品进行分组,使用.timeWindow(Time size, Time slide)对每个商品做滑动窗口(1小时窗口,5分钟滑动一次)。然后我们使用 .aggregate(AggregateFunction af, WindowFunction wf) 做增量的聚合操作,它能使用AggregateFunction提前聚合掉数据,减少state的存储压力。较之 .apply(WindowFunction wf) 会将窗口中的数据都存储下来,最后一起计算要高效地多。这里的CountAgg实现了AggregateFunction接口,功能是统计窗口中的条数,即遇到一条数据就加一。
// COUNT统计的聚合函数实现,每出现一条记录就加一
class CountAgg extends AggregateFunction[UserBehavior, Long, Long] {
override def createAccumulator(): Long = 0L
override def add(userBehavior: UserBehavior, acc: Long): Long = acc + 1
override def getResult(acc: Long): Long = acc
override def merge(acc1: Long, acc2: Long): Long = acc1 + acc2
}
聚合操作.aggregate(AggregateFunction af, WindowFunction wf)的第二个参数WindowFunction将每个key每个窗口聚合后的结果带上其他信息进行输出。我们这里实现的WindowResultFunction将<主键商品ID,窗口,点击量>封装成了ItemViewCount进行输出。
// 商品点击量(窗口操作的输出类型)
case class ItemViewCount(itemId: Long, windowEnd: Long, count: Long)
代码如下:
// 用于输出窗口的结果
class WindowResultFunction extends WindowFunction[Long, ItemViewCount, Tuple, TimeWindow] {
override def apply(key: Tuple, window: TimeWindow, aggregateResult: Iterable[Long],
collector: Collector[ItemViewCount]) : Unit = {
val itemId: Long = key.asInstanceOf[Tuple1[Long]].f0
val count = aggregateResult.iterator.next
collector.collect(ItemViewCount(itemId, window.getEnd, count))
}
}
现在我们就得到了每个商品在每个窗口的点击量的数据流。
为了统计每个窗口下最热门的商品,我们需要再次按窗口进行分组,这里根据ItemViewCount中的windowEnd进行keyBy()操作。然后使用ProcessFunction实现一个自定义的TopN函数TopNHotItems来计算点击量排名前3名的商品,并将排名结果格式化成字符串,便于后续输出。
.keyBy("windowEnd")
.process(new TopNHotItems(3)); // 求点击量前3名的商品
ProcessFunction是Flink提供的一个low-level API,用于实现更高级的功能。它主要提供了定时器timer的功能(支持EventTime或ProcessingTime)。本案例中我们将利用timer来判断何时收齐了某个window下所有商品的点击量数据。由于Watermark的进度是全局的,在processElement方法中,每当收到一条数据ItemViewCount,我们就注册一个windowEnd+1的定时器(Flink框架会自动忽略同一时间的重复注册)。windowEnd+1的定时器被触发时,意味着收到了windowEnd+1的Watermark,即收齐了该windowEnd下的所有商品窗口统计值。我们在onTimer()中处理将收集的所有商品及点击量进行排序,选出TopN,并将排名信息格式化成字符串后进行输出。
这里我们还使用了ListState来存储收到的每条ItemViewCount消息,保证在发生故障时,状态数据的不丢失和一致性。ListState是Flink提供的类似Java List接口的State API,它集成了框架的checkpoint机制,自动做到了exactly-once的语义保证。
// 求某个窗口中前 N 名的热门点击商品,key 为窗口时间戳,输出为 TopN 的结果字符串
class TopNHotItems(topSize: Int) extends KeyedProcessFunction[Tuple, ItemViewCount, String] {
private var itemState : ListState[ItemViewCount] = _
override def open(parameters: Configuration): Unit = {
super.open(parameters)
// 命名状态变量的名字和状态变量的类型
val itemsStateDesc = new ListStateDescriptor[ItemViewCount]("itemState-state", classOf[ItemViewCount])
// 定义状态变量
itemState = getRuntimeContext.getListState(itemsStateDesc)
}
override def processElement(input: ItemViewCount, context: KeyedProcessFunction[Tuple, ItemViewCount, String]#Context, collector: Collector[String]): Unit = {
// 每条数据都保存到状态中
itemState.add(input)
// 注册 windowEnd+1 的 EventTime Timer, 当触发时,说明收齐了属于windowEnd窗口的所有商品数据
// 也就是当程序看到windowend + 1的水位线watermark时,触发onTimer回调函数
context.timerService.registerEventTimeTimer(input.windowEnd + 1)
}
override def onTimer(timestamp: Long, ctx: KeyedProcessFunction[Tuple, ItemViewCount, String]#OnTimerContext, out: Collector[String]): Unit = {
// 获取收到的所有商品点击量
val allItems: ListBuffer[ItemViewCount] = ListBuffer()
import scala.collection.JavaConversions._
for (item <- itemState.get) {
allItems += item
}
// 提前清除状态中的数据,释放空间
itemState.clear()
// 按照点击量从大到小排序
val sortedItems = allItems.sortBy(_.count)(Ordering.Long.reverse).take(topSize)
// 将排名信息格式化成 String, 便于打印
val result: StringBuilder = new StringBuilder
result.append("====================================\n")
result.append("时间: ").append(new Timestamp(timestamp - 1)).append("\n")
for(i <- sortedItems.indices){
val currentItem: ItemViewCount = sortedItems(i)
// e.g. No1: 商品ID=12224 浏览量=2413
result.append("No").append(i+1).append(":")
.append(" 商品ID=").append(currentItem.itemId)
.append(" 浏览量=").append(currentItem.count).append("\n")
}
result.append("====================================\n\n")
// 控制输出频率,模拟实时滚动结果
Thread.sleep(1000)
out.collect(result.toString)
}
}
最后我们可以在main函数中将结果打印输出到控制台,方便实时观测:
.print();
至此整个程序代码全部完成,我们直接运行main函数,就可以在控制台看到不断输出的各个时间点统计出的热门商品。
最终完整代码如下:
case class UserBehavior(userId: Long, itemId: Long, categoryId: Int, behavior: String, timestamp: Long)
case class ItemViewCount(itemId: Long, windowEnd: Long, count: Long)
object HotItems {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
env.setParallelism(1)
val stream = env
.readTextFile("YOUR_PATH\\resources\\UserBehavior.csv")
.map(line => {
val linearray = line.split(",")
UserBehavior(linearray(0).toLong, linearray(1).toLong, linearray(2).toInt, linearray(3), linearray(4).toLong)
})
.assignAscendingTimestamps(_.timestamp * 1000)
.filter(_.behavior=="pv")
.keyBy("itemId")
.timeWindow(Time.minutes(60), Time.minutes(5))
.aggregate(new CountAgg(), new WindowResultFunction())
.keyBy(1)
.process(new TopNHotItems(3))
.print()
env.execute("Hot Items Job")
}
// COUNT 统计的聚合函数实现,每出现一条记录加一
class CountAgg extends AggregateFunction[UserBehavior, Long, Long] {
override def createAccumulator(): Long = 0L
override def add(userBehavior: UserBehavior, acc: Long): Long = acc + 1
override def getResult(acc: Long): Long = acc
override def merge(acc1: Long, acc2: Long): Long = acc1 + acc2
}
// 用于输出窗口的结果
class WindowResultFunction extends WindowFunction[Long, ItemViewCount, Tuple, TimeWindow] {
override def apply(key: Tuple, window: TimeWindow, aggregateResult: Iterable[Long],
collector: Collector[ItemViewCount]) : Unit = {
val itemId: Long = key.asInstanceOf[Tuple1[Long]].f0
val count = aggregateResult.iterator.next
collector.collect(ItemViewCount(itemId, window.getEnd, count))
}
}
// 求某个窗口中前 N 名的热门点击商品,key 为窗口时间戳,输出为 TopN 的结果字符串
class TopNHotItems(topSize: Int) extends KeyedProcessFunction[Tuple, ItemViewCount, String] {
private var itemState : ListState[ItemViewCount] = _
override def open(parameters: Configuration): Unit = {
super.open(parameters)
// 命名状态变量的名字和状态变量的类型
val itemsStateDesc = new ListStateDescriptor[ItemViewCount]("itemState-state", classOf[ItemViewCount])
// 从运行时上下文中获取状态并赋值
itemState = getRuntimeContext.getListState(itemsStateDesc)
}
override def processElement(input: ItemViewCount, context: KeyedProcessFunction[Tuple, ItemViewCount, String]#Context, collector: Collector[String]): Unit = {
// 每条数据都保存到状态中
itemState.add(input)
// 注册 windowEnd+1 的 EventTime Timer, 当触发时,说明收齐了属于windowEnd窗口的所有商品数据
// 也就是当程序看到windowend + 1的水位线watermark时,触发onTimer回调函数
context.timerService.registerEventTimeTimer(input.windowEnd + 1)
}
override def onTimer(timestamp: Long, ctx: KeyedProcessFunction[Tuple, ItemViewCount, String]#OnTimerContext, out: Collector[String]): Unit = {
// 获取收到的所有商品点击量
val allItems: ListBuffer[ItemViewCount] = ListBuffer()
import scala.collection.JavaConversions._
for (item <- itemState.get) {
allItems += item
}
// 提前清除状态中的数据,释放空间
itemState.clear()
// 按照点击量从大到小排序
val sortedItems = allItems.sortBy(_.count)(Ordering.Long.reverse).take(topSize)
// 将排名信息格式化成 String, 便于打印
val result: StringBuilder = new StringBuilder
result.append("====================================\n")
result.append("时间: ").append(new Timestamp(timestamp - 1)).append("\n")
for(i <- sortedItems.indices){
val currentItem: ItemViewCount = sortedItems(i)
// e.g. No1: 商品ID=12224 浏览量=2413
result.append("No").append(i+1).append(":")
.append(" 商品ID=").append(currentItem.itemId)
.append(" 浏览量=").append(currentItem.count).append("\n")
}
result.append("====================================\n\n")
// 控制输出频率,模拟实时滚动结果
Thread.sleep(1000)
out.collect(result.toString)
}
}
}
实际生产环境中,我们的数据流往往是从Kafka获取到的。如果要让代码更贴近生产实际,我们只需将source更换为Kafka即可:
val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
properties.setProperty("group.id", "consumer-group")
properties.setProperty("key.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer")
properties.setProperty("value.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer")
properties.setProperty("auto.offset.reset", "latest")
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
env.setParallelism(1)
val stream = env
.addSource(new FlinkKafkaConsumer[String]("hotitems", new SimpleStringSchema(), properties))
当然,根据实际的需要,我们还可以将Sink指定为Kafka、ES、Redis或其它存储,这里就不一一展开实现了。