上一篇:排序算法总结(一)----直接插入排序,希尔排序(java实现)
(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
(2)图解:
(3)用Java实现
public void selectSort(){
int a[]={1,54,6,3,78,34,12,45};
int position=0;
for(int i=0;i
(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
(2)图解:
初始序列:46,79,56,38,40,84
建堆:
交换,从堆中踢出最大数
剩余结点再建堆,再交换踢出最大数
依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
(3)用java实现
public class HeapSort {
inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
public HeapSort(){
heapSort(a);
}
public void heapSort(int[] a){
System.out.println("开始排序");
int arrayLength=a.length;
//循环建堆
for(int i=0;i=0;i--){
//k保存正在判断的节点
int k=i;
//如果当前k节点的子节点存在
while(k*2+1<=lastIndex){
//k节点的左子节点的索引
int biggerIndex=2*k+1;
//如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
if(biggerIndex
(1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。冒泡排序属于交换排序。
(2)图解:
(3)用Java实现
public void bubbleSort(){
int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
int temp=0;
for(int i=0;ia[j+1]){
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}
}
}
for(int i=0;i
(1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
(2)图解:
(3)用java实现
public class quickSort {
int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
public quickSort(){
quick(a);
for(int i=0;i public int getMiddle(int[] list, int low, int high) {
int tmp = list[low]; //数组的第一个作为中轴
while (low < high) {
while (low < high && list[high] >= tmp) {
high--;
}
list[low] = list[high]; //比中轴小的记录移到低端
while (low < high && list[low] <= tmp) {
low++;
}
list[high] = list[low]; //比中轴大的记录移到高端
}
list[low] = tmp; //中轴记录到尾
return low; //返回中轴的位置
}
public void _quickSort(int[] list, int low, int high) {
if (low < high) {
int middle = getMiddle(list, low, high); //将list数组进行一分为二
_quickSort(list, low, middle - 1); //对低字表进行递归排序
_quickSort(list, middle + 1, high); //对高字表进行递归排序
}
}
public void quick(int[] a2) {
if (a2.length > 0) { //查看数组是否为空
_quickSort(a2, 0, a2.length - 1);
}
}
}
(1)基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
(2)图解:
(3)用Java实现
public class mergingSort {
int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
public mergingSort(){
sort(a,0,a.length-1);
for(int i=0;i
(1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
(2)图解:
(3)用java实现
public class radixSort {
int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,101,56,17,18,23,34,15,35,25,53,51};
public radixSort(){
sort(a);
for(int i=0;i }
public void sort(int[] array){
//首先确定排序的趟数;
int max=array[0];
for(int i=1;imax){
max=array[i];
}
}
int time=0;
//判断位数;
while(max>0){
max/=10;
time++;
}
//建立10个队列;
List queue=new ArrayList();
for(int i=0;i<10;i++){
ArrayList queue1=new ArrayList();
queue.add(queue1);
}
//进行time次分配和收集;
for(int i=0;i
参阅: http://blog.csdn.net/pzhtpf/article/details/7559943