第一题:题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1542
题意:求多个长方形在平面上所覆盖的面积和。
扫描线。从下往上扫描,浮点数离散化处理。
思路参考:http://www.cnblogs.com/scau20110726/archive/2013/03/21/2972808.html
#include
#include
#include
#include
#include
using namespace std;
#define Maxn 250
#define lx (x<<1)
#define rx ((x<<1)|1)
#define MID ((l + r)>>1)
double X[Maxn];
double S[Maxn<<2];
int cnt[Maxn<<2];
struct Seg
{
double l;
double r;
double h;
int s;
Seg(){}
Seg(double _l,double _r,double _h,int _s)
{
l = _l;r = _r;h = _h;s = _s;
}
bool operator <(const Seg & a) const
{
return h>1;
if(X[mid] == x) return mid;
if(X[mid]< x) l = mid+1;
else r = mid-1;
}
return 0;
}
void pushUp(int l,int r,int x)
{
if(cnt[x]) S[x] = X[r+1] - X[l];
else if(l == r) S[x] = 0;
else S[x] = S[lx] + S[rx];
}
void update(int L,int R,int d,int l,int r,int x)
{
if(L<=l && r<=R)
{
cnt[x] += d;
pushUp(l,r,x);
return;
}
if(L<=MID) update(L,R,d,l,MID,lx);
if(MID+1<=R) update(L,R,d,MID+1,r,rx);
pushUp(l,r,x);
}
void init()
{
memset(S,0,sizeof(S));
memset(cnt,0,sizeof(cnt));
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
int cas = 0;
int n;
double a,b,c,d;
int p = 0;
while(scanf(" %d",&n)!=EOF && n!=0)
{
init();
cas++;
p = 0;
for(int i=0;i
第二题:题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1828
题意:求在平面内的长方形所形成的轮廓的周长。
思路和求面积相似。扫描线从下网上扫描,分为横边长度的记录len[]和竖边个数的记录numSeg[].分别将竖边长度和横边长度的改变绝对值都求出相加即可。
另外要考虑到竖边会重叠。使用lbd[]和rbd[]比对一下是否会重叠。
#include
#include
#include
#include
#include
using namespace std;
#define Maxn 15005
#define lx (x<<1)
#define rx ((x<<1)|1)
#define MID ((l + r)>>1)
int cnt[Maxn<<2];
//在横轴投影的有效长度
int len[Maxn<<2];
//在横轴投影的有效线段个数×2,即竖边的个数
int numSeg[Maxn<<2];
//区间左边界是否有竖边
bool lbd[Maxn<<2];
//区间右边界是否有竖边
bool rbd[Maxn<<2];
struct Seg
{
int l,r,h,s;
Seg(){}
Seg(int _l,int _r,int _h,int _s)
{
l = _l;r = _r;h = _h;s = _s;
}
bool operator <(const Seg &a) const
{
return ha.s);
}
};
Seg seg[Maxn];
void pushUp(int l,int r,int x)
{
if(cnt[x])
{
len[x] = (r - l + 1);
numSeg[x] = 2;
lbd[x] = rbd[x] = 1;
}
else if(l == r)
{
len[x] = numSeg[x] = lbd[x] = rbd[x] = 0;
}
else
{
lbd[x] = lbd[lx];
rbd[x] = rbd[rx];
len[x] = len[lx] + len[rx];
numSeg[x] = numSeg[lx] + numSeg[rx];
if(lbd[rx] && rbd[lx]) numSeg[x] -= 2;
}
}
void update(int L,int R,int d,int l,int r,int x)
{
if(L<=l && r<=R)
{
cnt[x]+= d;
pushUp(l,r,x);
return;
}
if(L<=MID) update(L,R,d,l,MID,lx);
if(MID+1<=R) update(L,R,d,MID+1,r,rx);
pushUp(l,r,x);
}
void init()
{
memset(cnt,0,sizeof(cnt));
memset(numSeg,0,sizeof(numSeg));
memset(len,0,sizeof(len));
memset(lbd,0,sizeof(lbd));
memset(rbd,0,sizeof(rbd));
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
int n;
int a,b,c,d;
int p,last = 0;
while(scanf(" %d",&n)!=EOF)
{
init();
p = 0;
last = 0;
int leftMin = 10005,rightMax = -10005;
for(int i=0;irightMax) rightMax = c;
seg[p++] = Seg(a,c,b,1);
seg[p++] = Seg(a,c,d,-1);
}
sort(seg,seg+p);
int ans = 0;
for(int i=0;i