转载自https://blog.csdn.net/timcanby/article/details/79247603
Augmentor是个增强图像训练数据的库,减少了使用图像库自己编写代码的繁杂工序,能够批量完成图像的旋转,放大,缩小,添加噪音以扩充数据量。接下来结合官方文档介绍下这个库和使用心得。
首先github:https://github.com/mdbloice/Augmentor
DOCs:https://augmentor.readthedocs.io/en/master/userguide/mainfeatures.html#perspective-skewing
安装:
pip install Augmentor
升级: pip install Augmentor --upgrade
导入:(导入需要增强数据的目录,这里以该路径下的100张图像初始化)
import Augmentor
p = Augmentor.Pipeline("/path/to/images")
然后你就可以使用这个pipeline对象p进行图像变换了:
在执行完所需的处理操作后通过:
p.sample(10000)
来进行样本的输出(在路径目录上新生成的output文件夹中)
首先是基本的旋转:
p.rotate(probability=0.7, max_left=10, max_right=10)
输入图像 | 输出图像例 |
其中左右旋转的数值不能超过25,probability参数为生成图像中执行操作图像的比例,当数值为1时全部的生成图像都会进行旋转操作。
在0.1.10版本中的旋转区间表示稍微有所变更:
p.rotate(probability=1,max_left_rotation=20,max_right_rotation=20)
如图所示为-20,20区间内的随机旋转。
透视,形变:
p.skew_tilt(probability=1,magnitude=1)
skew_tilt为上下左右方向的垂直型变,参数magnitude为型变的程度(0,1),当设置为1时的随机型变效果如下:
输入图像 | 输出图像 |
同理,向四个角形变:
p.skew_corner(probability=1,magnitude=1)
如果只想执行其中的某一类型变skew_left_right()#(只左右方向)
如果想进行所有方向的随机变化请使用skew()
弹性扭曲:
p.random_distortion(probability=1,grid_height=5,grid_width=16,magnitude=8)
参数的不同扭曲程度不同,这里可以通过自己调整达到想要的效果:
输入图像 | 输出图像 |
错切变换(shearing):
也就是使图像向某一侧倾斜啦,参数与旋转类似,范围是0-25
p.shear(probability=1,max_shear_left=0,max_shear_right=20)
截取(cropping):
当需要截取某一堆数据的某一个区域时不妨试试这个函数:
p.crop_by_size(probability=1,width=100,height=100,centre=True)
输入图像 | 输出图像 |
当然还有以下几种截取方式:
p.crop_centre()
p.crop_random()
镜像变换:
p.flip_left_right()
p.flip_random()
p.flip_top_bottom()
这个函数就不放例子了,结合透视型变的话会有很好的变形结果。
随机去除:
p.random_erasing(probability=1,rectangle_area=0.5)
这个函数是随机遮盖掉图像中的某一个部分,rectangle_area的变化范围为0.1-1,效果如下:
输入图像 | 输出图像 |
怎么样,对于批量处理图像数据来说也是一个不错的选择吧,合理组合这些函数可以输出更多的效果,例如:
p=Augmentor.Pipeline('/')
p.random_distortion(probability=1, grid_width=4, grid_height=4, magnitude=8)
p.rotate(probability=1,max_right_rotation=10,max_left_rotation=10)
p.sample(100)
输出: