系数矩阵如下:
所以我们需要求出系数矩阵的n次方,S[n] = 系数矩阵第一行的和
牛客OI赛制测试赛3 D
#include
#define llt long long
using namespace std;
const llt mod = 998244353;
llt a[3][3];
llt A[3][3]={
{1,1,0},
{0,1,1},
{0,1,0}
};
llt Ans[3][3]={{1,0,0},{0,1,0},{0,0,1}};
llt ans[3][3];
// 矩阵乘法 b = b*c
void mult(llt b[][3],llt c[][3]){
llt tmp[3][3];
for(int i=0;i<3;++i)
for(int j=0;j<3;++j){
tmp[i][j] = 0 ;
for(int k=0;k<3;++k){
tmp[i][j] += b[i][k]*c[k][j]%mod;
tmp[i][j] %= mod;
}
}
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
b[i][j] = tmp[i][j];
}
//块速矩阵幂
void quick_mod(llt t){
for(;t;t>>=1,mult(a,a))
if(t&1) mult(ans,a);
}
int main(){
llt n;
while(~scanf("%lld",&n)){
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
a[i][j] = A[i][j],ans[i][j]=Ans[i][j];
quick_mod(n);
cout<<(ans[0][0]+ans[0][1]+ans[0][2])%mod<
}
}
得到S[n] 为线性递推式!
输入前0~8项数:1,2,4,7,12,20,33,54,88;(n可以为0)
输入n,即可得到答案!
牛客OI赛制测试赛3 D
前面的1不能删去,因为n可以为0!
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define rep(i,a,n) for (int i=a;i
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=998244353;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
// head
int _;
ll n;
namespace linear_seq {
const int N=10010;
ll res[N],base[N],_c[N],_md[N];
vector Md;
void mul(ll *a,ll *b,ll k) {
rep(i,0,k+k) _c[i]=0;
rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-1;i>=k;i--) if (_c[i])
rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,0,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b) {
ll ans=0,pnt=0;
ll k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
Md.clear();
rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
rep(i,0,k) res[i]=base[i]=0;
res[0]=1;
while ((1ll<for (int p=pnt;p>=0;p--) {
mul(res,res,k);
if ((n>>p)&1) {
for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
if (ans<0) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(1,1),B(1,1);
int L=0,m=1,b=1;
rep(n,0,SZ(s)) {
ll d=0;
rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==0) ++m;
else if (2*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+1-L; B=T; b=d; m=1;
} else {
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
};
int main() {
scanf("%lld",&n);
printf("%d\n",linear_seq::gao(VI{1,2,4,7,12,20,33,54,88},n));
}
即fac[n] = 系数矩阵n-1方的第一行之和!
#include
#define llt long long
using namespace std;
const llt mod = 998244353;
llt a[2][2];
llt A[2][2]={
{1,1},
{1,0}
};
llt Ans[2][2]={{1,0},{0,1}};
llt ans[2][2];
void mult(llt b[][2],llt c[][2]){
llt tmp[2][2];
for(int i=0;i<2;++i)
for(int j=0;j<2;++j){
tmp[i][j] = 0 ;
for(int k=0;k<2;++k){
tmp[i][j] += b[i][k]*c[k][j]%mod;
tmp[i][j] %= mod;
}
}
for(int i=0;i<2;++i)
for(int j=0;j<2;++j)
b[i][j] = tmp[i][j];
}
void quick_mod(llt t){
for(;t;t>>=1,mult(a,a))
if(t&1) mult(ans,a);
}
int main(){
llt n;
while(~scanf("%lld",&n)){
for(int i=0;i<2;++i)
for(int j=0;j<2;++j)
a[i][j] = A[i][j],ans[i][j]=Ans[i][j];
quick_mod(n+1);
cout<<(ans[0][0]+ans[0][1]-1+mod)%mod<
}
}