要理解SG函数,首先要先知道SG的定理:
Sprague-Grudy定理:
令N = {0, 1, 2, 3, ...} 为自然数的集合。Sprague-Grundy 函数给游戏中的每个状态分配了一个自然数。结点v的Grundy值等于没有在v的后继的Grundy值中出现的最小自然数.
形式上:给定一个有限子集 S ⊂ N,令mex S(最小排斥值)为没有出现在S中的最小自然数。定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Garundy函数g如下:g(x)=mex{ g(y) | y是x的后继 }。
性质:
(1)所有的终结点所对应的顶点,其SG值为0,因为它的后继集合是空集——所有终结点是必败点(P点)。
(2)对于一个g(x)=0的顶点x,它的所有后继y都满足g(y)!=0——无论如何操作,从必败点(P点)都只能进入必胜点(N点)//对手走完又只能把N留给我们。
(3)对于一个g(x)!=0的顶点,必定存在一个后继点y满足g(y)=0——从任何必胜点(N点)操作,至少有一种方法可以进入必败点(P点)//就是那种我们要走的方法。
在这里,还需要说明下必胜点和必败点的定义,当前点x的所有后继状态都是必胜点,那么这个点是必败的,因为后一个人总是胜利的。当前点x的后继点中存在一个比败点,那么这个点是必胜点(因为我们可以选择最佳策略)
常见的应用:
(1)可选步数为1-m的连续整数,直接取模即可,SG(x) = x % (m+1);
(2)可选步数为任意步,SG(x) = x;
(3)可选步数为一系列不连续的数,用mex(计算每个节点的值)
下面对上面三种情况进行简要分析:
1.可选步数为1-m:我们可以这样思考,设当前点的值为x,那么它可以到达的其他点为,x-m,x-m+1.....x-1,如果x-m,x-m+1.....x-1都是必胜点,那么x是必败的,如果其中有一个是必败的,那么x就是必胜的,如果x=m+1,那么它一定是必败的,因为它的后继值m,m-1,....这些数,都可以一次性取走,所以他的后继值都是必胜的,所以他是必败的,简而言之,我只需要计算x%(m+1)如果为0,那么一定是必败态。
2. 可以选任意步,那么第一个拿的必然获胜。
3. 可以选的步骤为一些不联序的数,那么此时可以利用SG函数的定义进行计算(利用mex计算)
下面我给出利用mex计算SG函数值的代码:
void getSG(int n)
{
int mk[maxn];
sg[0] = 0;
memset(mk, -1, sizeof(mk));
for(int i = 1; i < maxn; i++)
{
for(int j = 0; j < n && s[j] <= i; j++)//是s[]为可以取的值,使用前应该先对它进行排序
mk[sg[i-s[j]]]=i;//将所有后继的sg标记为i,然后找到后继的sg没有出现过的最小正整数
int j = 0;
while(mk[j] == i) j++;
sg[i] = j;
}
}
下面是转载的一段话,对SG的描述:
SG函数
给定一个有向无环图和一个起始顶点上的一枚棋子,两名选手交替的将这枚棋子沿有向边进行移动,无法移 动者判负。事实上,这个游戏可以认为是所有Impartial Combinatorial Games的抽象模型。
也就是说,任何一个ICG都可以通过把每个局面看成一个顶点,对每个局面和它的子局面连一条有向边来抽象成这个“有向图游戏”。下 面我们就在有向无环图的顶点上定义Sprague-Grundy函数。首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Grundy函数g如下:g(x)=mex{ g(y) | y是x的后继 }。
来看一下SG函数的性质。首先,所有的terminal position所对应的顶点,也就是没有出边的顶点,其SG值为0,因为它的后继集合是空集。然后对于一个g(x)=0的顶点x,它的所有前驱y都满足 g(y)!=0。对于一个g(x)!=0的顶点,必定存在一个后继y满足g(y)=0。
以上这三句话表明,顶点x所代表的postion是P-position当且仅当g(x)=0(跟P-positioin/N-position的 定义的那三句话是完全对应的)。我们通过计算有向无环图的每个顶点的SG值,就可以对每种局面找到必胜策略了。但SG函数的用途远没有这样简单。如果将有 向图游戏变复杂一点,比如说,有向图上并不是只有一枚棋子,而是有n枚棋子,每次可以任选一颗进行移动,这时,怎样找到必胜策略呢?
让我们再来考虑一下顶点的SG值的意义。当g(x)=k时,表明对于任意一个0<=i
对于n个棋子,设它们对应的顶点的SG值分别为(a1,a2,…,an),再设局面(a1,a2,…,an)时的Nim游戏的一种必胜策略是把ai 变成k,那么原游戏的一种必胜策略就是把第i枚棋子移动到一个SG值为k的顶点。这听上去有点过于神奇——怎么绕了一圈又回到Nim游戏上了。
其实我们还是只要证明这种多棋子的有向图游戏的局面是P-position当且仅当所有棋子所在的位置的SG函数的异或为0。这个证明与上节的Bouton’s Theorem几乎是完全相同的,只需要适当的改几个名词就行了。
刚才,我为了使问题看上去更容易一些,认为n枚棋子是在一个有向图上移动。但如果不是在一个有向图上,而是每个棋子在一个有向图上,每次可以任选一个棋子(也就是任选一个有向图)进行移动,这样也不会给结论带来任何变化。
所以我们可以定义有向图游戏的和(Sum of Graph Games):设G1、G2、……、Gn是n个有向图游戏,定义游戏G是G1、G2、……、Gn的和(Sum),游戏G的移动规则是:任选一个子游戏Gi 并移动上面的棋子。Sprague-Grundy Theorem就是:g(G)=g(G1)^g(G2)^…^g(Gn)。也就是说,游戏的和的SG函数值是它的所有子游戏的SG函数值的异或。
再考虑在本文一开头的一句话:任何一个ICG都可以抽象成一个有向图游戏。所以“SG函数”和“游戏的和”的概念就不是局限于有向图游戏。我们给每 个ICG的每个position定义SG值,也可以定义n个ICG的和。所以说当我们面对由n个游戏组合成的一个游戏时,只需对于每个游戏找出求它的每个 局面的SG值的方法,就可以把这些SG值全部看成Nim的石子堆,然后依照找Nim的必胜策略的方法来找这个游戏的必胜策略了!
回到本文开头的问题。有n堆石子,每次可以从第1堆石子里取1颗、2颗或3颗,可以从第2堆石子里取奇数颗,可以从第3堆及以后石子里取任意颗…… 我们可以把它看作3个子游戏,第1个子游戏只有一堆石子,每次可以取1、2、3颗,很容易看出x颗石子的局面的SG值是x%4。第2个子游戏也是只有一堆 石子,每次可以取奇数颗,经过简单的画图可以知道这个游戏有x颗石子时的SG值是x%2。第3个游戏有n-2堆石子,就是一个Nim游戏。对于原游戏的每 个局面,把三个子游戏的SG值异或一下就得到了整个游戏的SG值,然后就可以根据这个SG值判断是否有必胜策略以及做出决策了。其实看作3个子游戏还是保 守了些,干脆看作n个子游戏,其中第1、2个子游戏如上所述,第3个及以后的子游戏都是“1堆石子,每次取几颗都可以”,称为“任取石子游戏”,这个超简 单的游戏有x颗石子的SG值显然就是x。其实,n堆石子的Nim游戏本身不就是n个“任取石子游戏”的和吗?
所以,对于我们来说,SG函数与“游戏的和”的概念不是让我们去组合、制造稀奇古怪的游戏,而是把遇到的看上去有些复杂的游戏试图分成若干个子游 戏,对于每个比原游戏简化很多的子游戏找出它的SG函数,然后全部异或起来就得到了原游戏的SG函数,就可以解决原游戏了。
最后给出一些经典的题目链接(可以直接去vjudge里直接搜索):
hdoj 1847 1536 3980
hdoj 1847
poj 1067
HDOJ:2188 2149 1846