《模型保存与加载》
本系列来总结Pytorch训练中的模型结构一些内容,包括模型的定义,模型参数化初始化方法,模型的保存与加载等
Pytorch模型训练(0) - CPN源码解析
Pytorch模型训练(1) - 模型定义
Pytorch模型训练(2) - 模型初始化
Pytorch模型训练(3) - 模型保存与加载
Pytorch模型训练(4) - Loss Function
Pytorch模型训练(5) - Optimizer
Pytorch模型训练(6) - 数据加载
Save使用pickle工具将模型对象序列化为pickle文件到disk
def save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL):
"""Saves an object to a disk file. 保存模型到disk
See also: :ref:`recommend-saving-models`
Args:
obj: saved object
f: a file-like object (has to implement write and flush) or a string
containing a file name 保存模型的文件对象或文件名
pickle_module: module used for pickling metadata and objects 使用python的pickle格式序列化模型
pickle_protocol: can be specified to override the default protocol pickle协议
.. warning::
If you are using Python 2, torch.save does NOT support StringIO.StringIO
as a valid file-like object. This is because the write method should return
the number of bytes written; StringIO.write() does not do this.
Please use something like io.BytesIO instead.
python2不支持StringIO.StringIO作为文件对象,因为其StringIO.write()不能返回write方法需要的写入字节个数
但可用io.BytesIO
Example:
>>> # Save to file
>>> x = torch.tensor([0, 1, 2, 3, 4])
>>> torch.save(x, 'tensor.pt')
>>> # Save to io.BytesIO buffer
>>> buffer = io.BytesIO()
>>> torch.save(x, buffer)
"""
调用底层_save方法,略微复杂,不继续探讨
return _with_file_like(f, "wb", lambda f: _save(obj, f, pickle_module, pickle_protocol))
使用这个save函数可以保存各种对象的模型、张量和字典;一般Pytorch保存模型后缀为:.pt 或 .pth 或 .pkl
Load使用pickle的unpickle工具将pickle的对象文件反序列化为内存
def load(f, map_location=None, pickle_module=pickle, **pickle_load_args):
"""
User extensions can register their own location tags and tagging and
deserialization methods using `register_package`.
Args:
文件对象或文件名
f: a file-like object (has to implement read, readline, tell, and seek),
or a string containing a file name
一个函数: 可以是torch.device,字符串,指定的重映射位置
可以用来指定加载模型到GPU或CPU等, 默认GPU
map_location: a function, torch.device, string or a dict specifying how to remap storage locations
pickle格式类型:这里应该时反pickle序列化
pickle_module: module used for unpickling metadata and objects (has to
match the pickle_module used to serialize file)
可选字段:比如 ``encoding=...`` 在版本切换种,编码冲突可用
pickle_load_args: optional keyword arguments passed over to
``pickle_module.load`` and ``pickle_module.Unpickler``, e.g.,
``encoding=...``.
.. note::
When you call :meth:`torch.load()` on a file which contains GPU tensors, those tensors
will be loaded to GPU by default. You can call `torch.load(.., map_location='cpu')`
and then :meth:`load_state_dict` to avoid GPU RAM surge when loading a model checkpoint.
.. note::
In Python 3, when loading files saved by Python 2, you may encounter
``UnicodeDecodeError: 'ascii' codec can't decode byte 0x...``. This is
caused by the difference of handling in byte strings in Python2 and
Python 3. You may use extra ``encoding`` keyword argument to specify how
these objects should be loaded, e.g., ``encoding='latin1'`` decodes them
to strings using ``latin1`` encoding, and ``encoding='bytes'`` keeps them
as byte arrays which can be decoded later with ``byte_array.decode(...)``.
Example:
#默认加载到GPU
>>> torch.load('tensors.pt')
# Load all tensors onto the CPU
加载到CPU
>>> torch.load('tensors.pt', map_location=torch.device('cpu'))
# Load all tensors onto the CPU, using a function
用函数加载到CPU
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage)
# Load all tensors onto GPU 1
加载到GPU1
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1))
# Map tensors from GPU 1 to GPU 0
从GPU1映射到GPU0
>>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'})
# Load tensor from io.BytesIO object
从 io.BytesIO对象加载
>>> with open('tensor.pt') as f:
buffer = io.BytesIO(f.read())
>>> torch.load(buffer)
"""
new_fd = False
if isinstance(f, str) or \
(sys.version_info[0] == 2 and isinstance(f, unicode)) or \
(sys.version_info[0] == 3 and isinstance(f, pathlib.Path)):
new_fd = True
f = open(f, 'rb')
try:
return _load(f, map_location, pickle_module, **pickle_load_args)
finally:
if new_fd:
f.close()
从源码不难看出pytorch保存模型的方式多样,保存模型的后缀名也是多样的,但要注意使用哪种保存,就要使用对应的加载方式
一般我们常用到Pytorch加载和保存模型方式有以下几种种:
torch.save(model, PATH)
model=torch.load(PATH)
这种方式重新加载的时候不需要自定义网络结构,保存时已经把网络结构保存了下来
这种方式,速度快,占空间少
torch.save(model.state_dict(),PATH)
model.load_state_dict(torch.load(PATH))
或者
torch.save(model.module.state_dict(), final_model_state_file)
model.module.load_state_dict(torch.load(final_model_state_file))
仅保存和加载模型参数,这种方式重新加载的时候需要自己定义网络model,并且其中的参数名称与结构要与保存的模型中的一致(可以是部分网络,比如只使用VGG的前几层),相对灵活,便于对网络进行修改
在实验中往往需要保存更多的信息,比如优化器的参数,那么可以采取下面的方法保存:
torch.save({
'epoch': epochID + 1,
'state_dict': model.state_dict(),
'best_loss': lossMIN,
'optimizer': optimizer.state_dict(),
'alpha': loss.alpha,
'gamma': loss.gamma
},checkpoint_path + '/m-' + launchTimestamp + '-' + str("%.4f" % lossMIN) + '.pth.tar')
以上包含的信息有,epochID, state_dict, min loss, optimizer, 自定义损失函数的两个参数;格式以字典的格式存储。对应加载的方式:
def load_checkpoint(model, checkpoint_PATH, optimizer):
if checkpoint != None:
model_CKPT = torch.load(checkpoint_PATH)
model.load_state_dict(model_CKPT['state_dict'])
print('loading checkpoint!')
optimizer.load_state_dict(model_CKPT['optimizer'])
return model, optimizer
但是,我们可能修改了一部分网络,比如加了一些,删除一些,等等,那么需要过滤这些参数,加载方式:
def load_checkpoint(model, checkpoint, optimizer, loadOptimizer):
if checkpoint != 'No':
print("loading checkpoint...")
model_dict = model.state_dict()
modelCheckpoint = torch.load(checkpoint)
pretrained_dict = modelCheckpoint['state_dict']
# 过滤操作
new_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict.keys()}
model_dict.update(new_dict)
# 打印出来,更新了多少的参数
print('Total : {}, update: {}'.format(len(pretrained_dict), len(new_dict)))
model.load_state_dict(model_dict)
print("loaded finished!")
# 如果不需要更新优化器那么设置为false
if loadOptimizer == True:
optimizer.load_state_dict(modelCheckpoint['optimizer'])
print('loaded! optimizer')
else:
print('not loaded optimizer')
else:
print('No checkpoint is included')
return model, optimizer
save_model({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
}, checkpoint=args.checkpoint)
保存了一些必要训练参数和模型参数
checkpoint_file = os.path.join(args.checkpoint, args.test+'.pth.tar')
checkpoint = torch.load(checkpoint_file)
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})".format(checkpoint_file, checkpoint['epoch']))
测试模型时,我们只关注模型参数
if args.resume:
if isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
pretrained_dict = checkpoint['state_dict']
model.load_state_dict(pretrained_dict)
args.start_epoch = checkpoint['epoch']
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
logger = Logger(join(args.checkpoint, 'log.txt'), resume=True)
else:
print("=> no checkpoint found at '{}'".format(args.resume))
else:
logger = Logger(join(args.checkpoint, 'log.txt'))
logger.set_names(['Epoch', 'LR', 'Train Loss'])
resume是指接着某一次保存的模型继续训练,因为我们在训练中,可能中断或需要调调参数,就可以用这种方式;一般来说,它需要保存模型时保存当时的训练现场,就像caffe训练时保存的solverstate文件
def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
print('Initialize with pre-trained ResNet')
from collections import OrderedDict
state_dict = model.state_dict()
pretrained_state_dict = model_zoo.load_url(model_urls['resnet50'])
for k, v in pretrained_state_dict.items():
if k not in state_dict:
continue
state_dict[k] = v
print('successfully load '+str(len(state_dict.keys()))+' keys')
model.load_state_dict(state_dict)
return model
finetuning与resume之间还是有点区别的;我们常常说的finetuning(迁移学习)本质就是加载预训练,继续训练;当然加载时,可能会根据需求选择参数,也可能会适当冻结部分参数等
1)model.state_dict
pytorch 中的 state_dict 是一个简单的python的字典对象;在模型中,它将每一层与它的对应参数建立映射关系,如model的每一层的weights及偏置等等
注意:只有那些参数可以训练的layer才会被保存到模型的state_dict中,如卷积层,线性层等等
优化器对象Optimizer也有一个state_dict,它包含了优化器的状态以及被使用的超参数,如lr, momentum,weight_decay等
2)OrderedDict
collections模块中的有序字典;模型中,大部分字典对象都是用它,如Sequential:
# Example of using Sequential
model = nn.Sequential(
nn.Conv2d(1,20,5),
nn.ReLU(),
nn.Conv2d(20,64,5),
nn.ReLU()
)
# Example of using Sequential with OrderedDict
model = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(1,20,5)),
('relu1', nn.ReLU()),
('conv2', nn.Conv2d(20,64,5)),
('relu2', nn.ReLU())
]))
在Python中,dict这个数据结构由于hash的特性,是无序的,这在有的时候会给我们带来一些麻烦, 幸运的是,collections模块为我们提供了OrderedDict,当你要获得一个有序的字典对象时,用它就对了